Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048701    DOI: 10.1088/1674-1056/ab7da9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation

Hai-Hong Jia(贾海洪)1,2, De-Liang Bao(包德亮)1,2, Yu-Yang Zhang(张余洋)1,2, Shi-Xuan Du(杜世萱)1,2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Thermal stability of core-shell nanoparticles (CSNPs) is crucial to their fabrication processes, chemical and physical properties, and applications. Here we systematically investigate the structural and thermal stabilities of single Au@Ag CSNPs with different sizes and their arrays by means of all-atom molecular dynamics simulations. The formation energies of all Au@Ag CSNPs we reported are all negative, indicating that Au@Ag CSNPs are energetically favorable to be formed. For Au@Ag CSNPs with the same core size, their melting points increase with increasing shell thickness. If we keep the shell thickness unchanged, the melting points increase as the core sizes increase except for the CSNP with the smallest core size and a bilayer Ag shell. The melting points of Au@Ag CSNPs show a feature of non-monotonicity with increasing core size at a fixed NP size. Further simulations on the Au@Ag CSNP arrays with 923 atoms reveal that their melting points decrease dramatically compared with single Au@Ag CSNPs. We find that the premelting processes start from the surface region for both the single NPs and their arrays.
Keywords:  bimetallic nanoparticles      thermal stability      melting point  
Received:  10 February 2020      Revised:  29 February 2020      Accepted manuscript online: 
PACS:  87.10.Tf (Molecular dynamics simulation)  
  68.60.Dv (Thermal stability; thermal effects)  
Fund: Project supported by the National Key Research & Development Project of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant No. 61888102), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Beijing Nova Program of China (Grant No. Z181100006218023).
Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation 2020 Chin. Phys. B 29 048701

[1] Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F and Nilsson A 2010 Nat. Chem. 2 454
[2] Jia X, Li J, Zhang X and Wang E 2015 Chem. Commun. 51 17417
[3] Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z and Xia Y 2010 ACS Nano 4 6725
[4] Zaleska-Medynska A, Marchelek M, Diak M and Grabowska E 2016 Adv. Colloid Interface Sci. 229 80
[5] Chong L, Wen J, Kubal J, Sen F G, Zou J, Greeley J, Chan M, Barkholtz H, Ding W and Liu D J 2018 Science 362 1276
[6] Fang H, Yang J, Wen M and Wu Q 2018 Adv. Mater. 30 1705698
[7] Jiang H L, Akita T, Ishida T, Haruta M and Xu Q 2011 J. Am. Chem. Soc. 133 1304
[8] Ding K, Cullen D A, Zhang L, Cao Z, Roy A D, Ivanov I N and Cao D 2018 Science 362 560
[9] Wong A, Liu Q, Griffin S, Nicholls A and Regalbuto J R 2017 Science 358 1427
[10] Yao Y, Huang Z, Xie P, Lacey S D, Jacob R J, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah M R, Wang C, Shahbazian-Yassar R, Li J and Hu L 2018 Science 359 1489
[11] Zhou M, Wang H, Vara M, Hood Z D, Luo M, Yang T H, Bao S, Chi M, Xiao P, Zhang Y and Xia Y 2016 J. Am. Chem. Soc. 138 12263
[12] Ren G, Shi H and Xing Y 2007 Nanotechnology 18 385604
[13] Xiao H J, Shen C M, Shi X Z, Yang S D, Tian Y, Lin S X and Gao H J 2015 Chin. Phys. B 24 078109
[14] Hutzler A, Schmutzler T, Jank M P M, Branscheid R, Unruh T, Spiecker E and Frey L 2018 Nano Lett. 18 7222
[15] Aslam U and Linic S 2017 ACS Appl. Mater. Interfaces 9 43127
[16] Kim T G, Park H J, Woo K, Jeong S, Choi Y and Lee S Y 2018 ACS Appl. Mater. Interfaces 10 1059
[17] Liu K K, Tadepalli S, Tian L and Singamaneni S 2015 Chem. Mater. 27 5261
[18] Moseley P and Curtin W A 2015 Nano Lett. 15 4089
[19] Haldar K K, Kundu S and Patra A 2014 ACS Appl. Mater. Interfaces 6 21946
[20] Binns C, Qureshi M T, Peddis D, Baker S H, Howes P B, Boatwright A, Cavill S A, Dhesi S S, Lari L, Kroger R and Langridge S 2013 Nano Lett. 13 3334
[21] Seraj S, Kunal P, Li H, Henkelman G, Humphrey S M and Werth C J 2017 ACS Catal. 7 3268
[22] Kim S M, Abdala P M, Margossian T, Hosseini D, Foppa L, Armutlulu A, van Beek W, Comas-Vives A, Coperet C and Muller C 2017 J. Am. Chem. Soc. 139 1937
[23] Luo L, Duan Z, Li H, Kim J, Henkelman G and Crooks R M 2017 J. Am. Chem. Soc. 139 5538
[24] García S, Zhang L, Piburn G W, Henkelman G and Humphrey S M 2014 ACS Nano 8 11512
[25] Schnedlitz M, Lasserus M, Meyer R, Knez D, Hofer F, Ernst W E and Hauser A W 2018 Chem. Mater. 30 1113
[26] Bonifacio C S, Carenco S, Wu C H, House S D, Bluhm H and Yang J C 2015 Chem. Mater. 27 6960
[27] Vara M, Roling L T, Wang X, Elnabawy A O, Hood Z D, Chi M, Mavrikakis M and Xia Y 2017 ACS Nano 11 4571
[28] Akbarzadeh H, Mehrjouei E, Ramezanzadeh S and Izanloo C 2017 J. Mol. Liq. 248 1078
[29] Akbarzadeh H, Mehrjouei E, Masoumi A and Sokhanvaran V 2018 J. Mol. Liq. 249 477
[30] Huang R, Shao G F, Zhang Y and Wen Y H 2017 ACS Appl. Mater. Interfaces 9 12486
[31] Li M and Cheng D 2013 J. Phys. Chem. C 117 18746
[32] Akbarzadeh H, Abbaspour M and Mehrjouei E 2016 Phys. Chem. Phys. Chem. 18 25676
[33] Akbarzadeh H, Abbaspour M and Mehrjouei E 2017 J. Mol. Liq. 242 1002
[34] Fernández-Navarro C and Mejía-Rosales S 2017 J. Phys. Chem. C 121 21658
[35] Akbarzadeh H, Mehrjouei E and Shamkhali A N 2017 J. Chem. Phys. Lett. 8 2990
[36] Wen Y H, Huang R, Li C, Zhu Z Z and Sun S G 2012 J. Mater. Chem. 22 7380
[37] Huang R, Wen Y H, Zhu Z Z and Sun S G 2016 Phys. Chem. Phys. Chem. 18 9847
[38] Huang R, Wen Y H, Zhu Z Z and Sun S G 2012 J. Phys. Chem. C 116 11837
[39] Huang R, Wen Y H, Shao G F and Sun S G 2013 J. Phys. Chem. C 117 4278
[40] Huang R, Wen Y H, Shao G F, Zhu Z Z and Sun S G 2013 J. Phys. Chem. C 117 6896
[41] Yang Z, Yang X and Xu Z 2008 J. Phys. Chem. C 112 4937
[42] Zhang J P, Zhang Y Y, Wang E P, Tang C M, Cheng X L and Zhang Q H 2016 Chin. Phys. B 25 036102
[43] Rodríguez-González B, Burrows A, Watanabe M, Kiely C J and Liz Marzán L M 2005 J. Mater. Chem. 15 1755
[44] López Lozano X, Mottet C and Weissker H C 2013 J. Phys. Chem. C 117 3062
[45] Mao K, Yang Z, Li J, Zhou X, Li X and Hu J 2017 Talanta 175 338
[46] Mao K, Zhou Z, Han S, Zhou X, Hu J, Li X and Yang Z 2018 Talanta 190 263
[47] Song L, Mao K, Zhou X and Hu J 2016 Talanta 146 285
[48] Wang A Q, Chang C M and Mou C Y 2005 J. Phys. Chem. B 109 18860
[49] Yen C W, Lin M L, Wang A, Chen S A, Chen J M and Mou C Y 2009 J. Phys. Chem. C 113 17831
[50] Slater T J A, Macedo A, Schroeder S L M, Burke M G, O'Brien P, Camargo P H C and Haigh S J 2014 Nano Lett. 14 1921
[51] Liu S, Chen G, Prasad P N and Swihart M T 2011 Chem. Mater. 23 4098
[52] Senapati S, Ahmad A, Khan M I, Sastry M and Kumar R 2005 Small 1 517
[53] Huang Z, Meng G, Hu X, Pan Q, Huo D, Zhou H, Ke Y and Wu N 2019 Nano Res. 12 449
[54] Samal A K, Polavarapu L, Rodal-Cedeira S, Liz-Marzán L M, Pérez-Juste J and Pastoriza-Santos I 2013 Langmuir 29 15076
[55] Yang Y, Shi J, Kawamura G and Nogami M 2008 Scr. Mater. 58 862
[56] Qi W H and Lee S T 2010 J. Phys. Chem. C 114 9580
[57] Gould A L, Logsdail A J and Catlow C R A 2015 J. Phys. Chem. C 119 23685
[58] Chen, Curley B C, Rossi G and Johnston R L 2007 J. Phys. Chem. C 111 9157
[59] Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371
[60] Wang B, Liu M, Wang Y and Chen X 2011 J. Phys. Chem. C 115 11374
[61] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[62] Bon M, Ahmad N, Erni R and Passerone D 2019 J. Chem. Phys. 151 064105
[63] Li X G, Hu C Z, Chen C, Deng Z, Luo J and Ong S P 2018 Phys. Rev. B 98 094104
[64] Zhou J, Yang Y, Yang Y, Kim D S, Yuan A, Tian X, Ophus C, Sun F, Schmid A K, Nathanson M, Heinz H, An Q, Zeng H, Ercius P and Miao J 2019 Nature 570 500
[65] Löwen H 1994 Phys. Rep. 237 249
[66] Hansen K 2013 Statistical Physics of Nanoparticles in the Gas Phase (The Netherlands: Springer)
[67] Pawlow P 1969 Z. Phys. Chem. 65 1
[68] Asoro M, Damiano J and Ferreira P J 2009 Microsc. Microanal. 15 706
[69] Nanda K K, Sahu S N and Behera S N 2002 Phys. Rev. A 66 013208
[70] Liu X, Wen X and Hoffmann R 2018 ACS Catal. 8 3365
[71] Skriver H L and Rosengaard N M 1992 Phys. Rev. B 46 7157
[72] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[73] Duan B, Zhou J, Fang Z, Wang C, Wang X, Hemond H F, Chan-Park M B and Duan H 2015 Nanoscale 7 12606
[74] Karn-orachai K, Sakamoto K, Laocharoensuk R, Bamrungsap S, Dharakul T and Miki K 2017 RSC Adv. 7 14099
[75] Karn-orachai K, Sakamoto K, Laocharoensuk R, Bamrungsap S, Songsivilai S, Dharakul T and Miki K 2016 RSC Adv. 6 97791
[76] Pincella F, Song Y, Ochiai T, Isozaki K, Sakamoto K and Miki K 2014 Chem. Phys. Lett. 605-606 115
[77] Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J and Sun X 2014 Nanotechnology 25 245301
[78] Lewis L J, Jensen P and Barrat J L 1997 Phys. Rev. B 56 2248
[79] Jin B, Sushko M L, Liu Z, Jin C and Tang R 2018 Nano Lett. 18 6551
[80] Wang J, Chen S, Cui K, Li D and Chen D 2016 ACS Nano 10 2893
[81] Wang J and Shin S 2017 RSC Adv. 7 21607
[82] Nakao K, Ishimoto T and Koyama M 2014 J. Phys. Chem. C 118 15766
[83] Boles M A, Engel M and Talapin D V 2016 Chem. Rev. 116 11220
[1] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[2] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[3] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[4] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[5] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[6] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
[7] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[8] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
[9] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[10] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[11] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[12] Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution
Chu-Yu Zhong(钟础宇), Xing Zhang(张星), Di Liu(刘迪), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(6): 064204.
[13] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[14] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[15] Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films
Wen-Feng Liu(刘文峰), Min-Gang Zhang(张敏刚), Ke-Wei Zhang(张克维), Hai-Jie Zhang(张海杰), Xiao-Hong Xu(许小红), Yue-Sheng Chai(柴跃生). Chin. Phys. B, 2016, 25(11): 117506.
No Suggested Reading articles found!