Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056401    DOI: 10.1088/1674-1056/ab7da8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy

Ben-Zheng Tang(唐本镇)1,2, Xiao-Ping Liu(刘晓萍)1, Dong-Mei Li(李冬梅)1, Peng Yu(余鹏)1, Lei Xia(夏雷)2
1 Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
2 Laboratory for Microstructure&Institute of Materials, Shanghai University, Shanghai 200072, China
Abstract  A small amount of Ni was added into the binary Gd50Co50 amorphous alloy to replace Gd in order to obtain ternary Co50Gd50-xNx (x= 1, 2, and 3) amorphous alloys. Compared to the binary Gd50Co50 amorphous alloy, the Co50Gd50-xNx amorphous alloys show an enhanced Curie temperature (TC) with a weakened formability. The maximum magnetic entropy change (-ΔSmpeak) of the Co50Gd50-xNx amorphous alloys is found to decrease with the increasing TC. The adiabatic temperature rise (ΔTad) of the Co50Gd47Ni3 amorphous alloy is superior to that of the Fe-based metallic glasses at room temperature. The variation of the TC and -ΔSmpeak of the Gd50Co50 amorphous alloy with Ni addition, and the mechanism involved, were discussed.
Keywords:  amorphous alloy      glass forming ability      magnetocaloric effect      adiabatic temperature rise  
Received:  10 February 2020      Revised:  25 February 2020      Accepted manuscript online: 
PACS:  64.70.pe (Metallic glasses)  
  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671119 and 51871139), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2018jcyjAX0329 and cstc2018jcyjAX0444), and the Key Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJZD-K201900501).
Corresponding Authors:  Peng Yu     E-mail:  pengyu@cqnu.edu.cn

Cite this article: 

Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷) Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy 2020 Chin. Phys. B 29 056401

[1] Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325
[2] Brück E 2005 J. Phys. D: Appl. Phys. 38 R381
[3] de Oliveira N A and von Ranke P J 2010 Phys. Rep. 489 89
[4] Gschneider Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[5] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater. Sci. 93 112
[6] Chen L S, Zhang J Z, Wen L, Yu P and Xia L 2018 Sci. Chin.: Phys. Mech. Astro 61 056121
[7] Gan L H, Ma L Y, Tang B Z, Ding D and Xia L 2017 Sci. Chin.: Phys. Mech. Astro 60 076121
[8] Luo Q and Wang W H 2010 J. Alloys Compd. 495 209
[9] Du J, Zheng Q, Li Y B, Zhang Q, Li D and Zhang Z D 2008 J. Appl. Phys. 103 023918
[10] Xia L, Chan K C, Tang M B and Dong Y D 2014 J. Appl. Phys. 115 223904
[11] Xia L, Chan K C and Tang M B 2011 J. Alloys Compd. 509 6640
[12] Fu H and Zou M 2011 J. Alloys Compd. 509 4613
[13] Yuan F, Du J and Shen B L 2012 Appl. Phys. Lett. 101 032405
[14] Tang B Z, Huang L W, Song M N, Ding D, Wang X and Xia L 2019 J. Non-Cryst. Solids 522 119589
[15] Zhong X C, Huang X W, Shen X Y, Mo H Y and Liu Z W 2016 J. Alloys Compd. 682 476
[16] Yu P, Zhang N Z, Cui Y T, Wu Z M, Wen L, Zeng Z Y and Xia L 2016 J. Non-Cryst. Solids 434 36
[17] Tang B Z, Guo D Q, Ding D, Xia L and Chan K C 2017 J. Non-Cryst. Solids 464 30
[18] Liu G L, Zhao D Q, Bai H Y, Wang W H and Pan M X 2016 J. Phys. D: Appl. Phys. 49 055004
[19] Ma L Y, Gan L H, Chan K C, Ding D and Xia L 2017 J. Alloys Compd. 723 197
[20] Song M N, Huang L W, Tang B Z, Ding D, Zhou Q and Xia L 2019 Mod. Phys. Lett. B
[21] Tang B Z, Yu P, Ding D, Wu C and Xia L 2017 J. Magn. Magn. Mater 424 275
[22] Yu P, Chen L S and Xia L 2018 J. Non-Crys. T Solids 493 82
[23] Wang Z W, Yu P, Cui Y T and Xia L 2016 J. Alloys Compd. 658 598
[24] Xia L, Wu C, Chen S H and Chan K C 2015 AIP Adv. 5 097122
[25] Wu C, Ding D, Xia L and Chan K C 2016 AIP Adv. 6 035302
[26] Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A and Wang W H 2020 Mater. Today 32 26
[27] van der Marel D and Sawatzky G A 1988 Phys. Rev. B 37 10674
[28] Belo J H, Amaral J S, Pereira A M, Amaral V S and Araújo J P 2012 Appl. Phys. Lett. 100 242407
[1] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[2] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[3] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[4] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[5] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[6] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[7] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[8] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[9] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[10] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[11] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[12] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[13] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[14] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
[15] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
No Suggested Reading articles found!