Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047504    DOI: 10.1088/1674-1056/ab7da7
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Multicaloric and coupled-caloric effects

Jia-Zheng Hao(郝嘉政)1,2, Feng-Xia Hu(胡凤霞)2,3,4, Zi-Bing Yu(尉紫冰)2,3, Fei-Ran Shen(沈斐然)2,3, Hou-Bo Zhou(周厚博)2,3, Yi-Hong Gao(高怡红)2,3, Kai-Ming Qiao(乔凯明)2,3, Jia Li(李佳)2,3, Cheng Zhang(张丞)2,3, Wen-Hui Liang(梁文会)2,3, Jing Wang(王晶)2,3,5, Jun He(何峻)1, Ji-Rong Sun(孙继荣)2,3,4, Bao-Gen Shen(沈保根)2,3,4
1 Division of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China;
2 Beijing National Laboratory for Condensed Matter Physics&State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Fujian Innovation Academy, Chinese Academy of Sciences, Fuzhou 350108, China
Abstract  The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field. For practical applications, the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices. Here, the state of the art in multi-field driven multicaloric effect is reviewed. The phenomenology and fundamental thermodynamics of the multicaloric effect are well established. A number of theoretical and experimental research approaches are covered. At present, the theoretical understanding of the multicaloric effect is thorough. However, due to the limitation of the current experimental technology, the experimental approach is still in progress. All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects. Finally, the viewpoint of further developments is presented.
Keywords:  multicaloric effect      coupled-caloric effect      solid-state refrigeration      magnetocaloric effect  
Received:  01 February 2020      Revised:  20 February 2020      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies) (Entropy)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0702702, 2019YFA0704904, 2018YFA0305704, 2017YFA0206300, 2017YFA0303601, and 2016YFB0700903), the National Natural Science Foundation of China (Grant Nos. U1832219, 51531008, 51771223, 51590880, 51971240, 11674378, 11934016, and 11921004), and the Key Program and Strategic Priority Research Program (B) of the Chinese Academy of Sciences.
Corresponding Authors:  Feng-Xia Hu, Jun He     E-mail:;

Cite this article: 

Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) Multicaloric and coupled-caloric effects 2020 Chin. Phys. B 29 047504

[1] GschneidnerJr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater Sci. 93 112
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Li L W and Yan M 2020 J. Alloys Compd. 823 153810
[5] Zheng X Q and Shen B G 2017 Chin. Phys. B 26 027501
[6] Li Z X, Li K, Shen J, Dai W, Gao X Q, Guo X H and Gong M Q 2017 Acta Phys. Sin. 66 110701 (in Chinese)
[7] Neese B, Chu B, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
[8] Manosa L and Planes A 2017 Adv. Mater. 29 1603607
[9] Tušek J, Engelbrecht K, Eriksen D, Dall'Olio S, Tušek J and Pryds N 2016 Nat. Ener. 1 16134
[10] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[11] Morellon L, Arnold Z, Magen C, Ritter C, Prokhnenko O, Skorokhod Y, Algarabel P A, Ibarra M R and Kamarad J 2004 Phys. Rev. Lett. 93 137201
[12] Hao J Z, Hu F X, Wang J T, Shen F R, Yu Z B, Zhou H B, Wu H, Huang Q Z, Qiao K M, Wang J, He J, He L H, Sun J R and Shen B G 2020 Chem. Mater.
[13] Samanta T, Lepkowski D L, Saleheen A U, Shankar A, Prestigiacomo J, Dubenko I, Quetz A, Oswald I W H, McCandless G T, Chan J Y, Adams P W, Young D P, Ali N and Stadler S 2015 Phys. Rev. B 91 020401
[14] Chauhan A, Patel S and Vaish R 2015 Acta Mater. 97 17
[15] Liang F X, Hao J Z, Shen F R, Zhou H B, Wang J, Hu F X, He J, Sun J R and Shen B G 2019 APL Mater. 7 051102
[16] Lisenkov S, Mani B K, Chang C M, Almand J and Ponomareva I 2013 Phys. Rev. B 87 224101
[17] Stern-Taulats E, Castán T, Planes A, Lewis L H, Barua R, Pramanick S, Majumdar S and Mañosa L 2017 Phys. Rev. B 95 104424
[18] Pecharsky V K and Gschneidner Jr. K A 1997 Phys. Rev. Lett. 78 4494
[19] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[20] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[21] Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, Ochoa-Gamboa R A, Planes A, Mañosa L, González-Alonso D, Stipcich M, Romero R, Ríos-Jara D and Flores-Zúñiga H 2011 Phys. Rev. B 83 174109
[22] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[23] ul Hassan N, Shah I A, Khan T, Liu J, Gong Y, Miao X and Xu F 2018 Chin. Phys. B 27 037504
[24] Yang H, Liu J, Li C, Wang G L, Gong Y Y and Xu F 2018 Chin. Phys. B 27 107502
[25] Bao L F, Huang W D and Ren Y J 2016 Chin. Phys. Lett. 33 077502
[26] Zhang H, Xing C F, Long K W, Xiao Y N, Tao K, Wang L C and Long Y 2018 Acta Phys. Sin. 67 207501 (in Chinese)
[27] Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R and Shen B G 2018 Chin. Phys. B 27 067503
[28] Trung N T, Ou Z Q, Gortenmulder T J, Tegus O, Buschow K H J and Brück E 2009 Appl. Phys. Lett. 94 102513
[29] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater 11 620
[30] Liu Y, Phillips L C, Mattana R, Bibes M, Barthelemy A and Dkhil B 2016 Nat. Commun. 7 11614
[31] Liu J, Gong Y, You Y, You X, Huang B, Miao X, Xu G, Xu F and Brück E 2019 Acta Mater. 174 450
[32] Qiao K, Hu F, Liu Y, Li J, Kuang H, Zhang H, Liang W, Wang J, Sun J and Shen B 2019 Nan. Ener 59 285
[33] Guillou F, Pathak A K, Paudyal D, Mudryk Y, Wilhelm F, Rogalev A and Pecharsky V K 2018 Nat. Commun. 9 2925
[34] Scheibel F, Gottschall T, Taubel A, Fries M, Skokov K P, Terwey A, Keune W, Ollefs K, Wende H, Farle M, Acet M, Gutfleisch O and Gruner M E 2018 Ener. Techno 6 1397
[35] Liu Y, Zhang G, Li Q, Bellaiche L, Scott J F, Dkhil B and Wang Q 2016 Phys. Rev. B 94 214113
[36] Planes A, Castán T and Saxena A 2014 Philos. Mag. 94 1893
[37] Planes A, Castán T and Saxena A 2016 Philos. Trans. R. Soc. A 374 20150304
[38] Chauhan A, Patel S and Vaish R 2015 Acta Mater. 89 384
[39] Li L W 2016 Chin. Phys. B 25 037502
[40] Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
[41] Zhang Y 2019 J. Alloys Compd. 787 1173
[42] Hao Z H, Wang H Y, Zhang Q and Mo Z J 2018 Acta Phys. Sin. 67 247502 (in Chinese)
[43] Wu X F, Guo C P, Cheng G, Li C R, Wang J, Du Y S, Rao G H and Du Z M 2019 Chin. Phys. B 28 057502
[44] Mo Z J, Sun Q L, Shen J, Yang M, Li Y J, Li L, Liu G D, Tang C C and Meng F B 2018 Chin. Phys. B 27 017501
[45] De Sousa V, Von Ranke P and Gandra F 2011 J. Appl. Phys. 109 063904
[46] Li L W, Yuan Y, Xu C, Qi Y and Zhou S Q 2017 AIP Adv. 7 056401
[47] Wang X, Wang L, Ma Q, Sun G, Zhang Y and Cui J 2017 J. Alloys Compd. 694 613
[48] Chen J, Zheng X Q, Dong Q Y, Sun J R and Shen B G 2011 Appl. Phys. Lett. 99
[49] Delyagin N N, Krylov V I and Rozantsev I N 2007 J. Magn. Magn. Mater. 308 74
[50] Chen J, Zheng X Q, Dong Q Y, Sun J R and Shen B G 2011 Appl. Phys. Lett. 99 122503
[51] Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 17A938
[52] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. Lett. 33 126101
[53] Wu C, Ding D and Xia L 2016 Chin. Phys. Lett. 33 016102
[54] Chen X and Zhao M H 2018 Acta Phys. Sin. 67 197501 (in Chinese)
[55] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[56] Dong Q, Shen B, Chen J, Shen J, Zhang H and Sun J 2009 J. Appl. Phys. 105 07A305
[57] Klimczak M and Talik E 2010 J. Phys.: Conf. Ser. 200 092009
[58] Kaštil J, Javorsk#253; P, Kamarad J, Diop L, Isnard O and Arnold Z 2014 Intermetallics 54 15
[59] Fickenscher T, Rodewald U C, Niepmann D, Mishra R, Eschen M and Pöttgen R 2005 Z. Naturforsch. B 60 271
[60] Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
[61] Dong X, Feng J, Yi Y and Li L 2018 J. Appl. Phys. 124 093901
[62] Fisher I, Islam Z and Canfield P 1999 J. Magn. Magn. Mater. 202 1
[63] Hermes W, Rodewald U C and Pöttgen R 2010 J. Appl. Phys. 108 113919
[64] Li L, Niehaus O, Kersting M and Pöttgen R 2015 Intermetallics 62 17
[65] Li L, Nishimura K, Kadonaga M, Qian Z and Huo D 2011 J. Appl. Phys. 110 043912
[66] Lisenkov S and Ponomareva I 2012 Phys. Rev. B 86 104103
[67] Ponomareva I and Lisenkov S 2012 Phys. Rev. Lett. 108 167604
[68] Planes A, Stern-Taulats E, Castán T, Vives E, Mañosa L and Saxena A 2015 Mater. Toda.: Procee 2 S477
[69] Meng H, Li B, Ren W and Zhang Z 2013 Phys. Lett. A 377 567
[70] Nikitin S A, Myalikgulyev G, Tishin A M, Annaorazov M P, Asatryan K A and Tyurin A L 1990 Phys. Lett. A 148 363
[71] Nikitin S A, Myalikgulyev G, Annaorazov M P, Tyurin A L, Myndyev R W and Akopyan S A 1992 Phys. Lett. A 171 234
[72] Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J L, Pramanick S, Majumdar S, Frontera C and Mañosa L 2014 Phys. Rev. B 89 214105
[73] Kübler J, William A R and Sommers C B 1983 Phys. Rev. B 28 1745
[74] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[75] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
[76] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
[77] Sharma V K, Chattopadhyay M K and Roy S B 2011 J. Phys.: Condens Matter 23 366001
[78] Quetz A, Koshkid'ko Y S, Titov I, Rodionov I, Pandey S, Aryal A, Ibarra-Gaytan P J, Prudnikov V, Granovsky A, Dubenko I, Samanta T, Cwik J, Sánchez Llamazares J L, Stadler S, Lähderanta E and Ali N 2016 J. Alloys Compd. 683 139
[1] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[2] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[3] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[4] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[5] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[6] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[7] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[8] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[9] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[10] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[11] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[12] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
[13] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[14] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
[15] Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides
Lei Xu(许磊), Jin-Liang Zhao(赵金良), Jing-Jie Yang(杨静洁), Hong-Guo Zhang(张红国), Dan-Min Liu(刘丹敏), Ming Yue(岳明), Yi-Jian Jang(蒋毅坚). Chin. Phys. B, 2017, 26(6): 067502.
No Suggested Reading articles found!