Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047503    DOI: 10.1088/1674-1056/ab7da1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction

Pengfei Liu(刘鹏飞)1,2, Jie Peng(彭杰)1, Mianqi Xue(薛面起)2, Bosen Wang(王铂森)3
1 Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We revisit the reversible magnetocaloric effect of itinerant ferromagnet Mn3GaC near the ferromagnetic to paramagnetic phase transition by adopting the experimental and theoretical methods and critical behavior of Mn-rich Mn3GaC with an enhanced FM interaction. Landau theory model cannot account for temperature dependent magnetic entropy change which is estimated from thermal magnetic methods only considering magnetoelastic coupling and the electron-electron interaction, apart from molecular mean-field model. Critical behavior is studied by adopting the modified Arrott plot, Kouvel-Fisher plot, and critical isotherm analysis. With these critical exponents, experimental data below and above Tc collapse into two universal branches, fulfilling the single scaling equation m=f±(h), where m and h are renormalized magnetization and field. Critical exponents are confirmed by Widom scaling law and just between mean-field model and three-dimensional Heisenberg model, as the evidence for the existence of long-range ferromagnetic interaction. With increasing the Mn content, Tc increases monotonously and critical exponents increases accordingly. The exchange distance changes from J(r) ~ r-4.68 for x = 0 to J(r) ~ r-4.71 for x = 0.08, respectively, which suggests the competition of the Mn-Mn direct interaction and the itinerant Mn-C-Mn hybridization. The possible mechanism is proposed.
Keywords:  magnetocaloric effect      critical behavior      Mn3GaC  
Received:  19 January 2020      Revised:  02 March 2020      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Corresponding Authors:  Bosen Wang     E-mail:  bswang@iphy.ac.cn

Cite this article: 

Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森) Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction 2020 Chin. Phys. B 29 047503

[1] Kamishima K, Goto T, Nakagawa H, et al. 2000 Phys. Rev. B 63 024426
[2] Wang B S, Tong P, Sun Y P, Li L J, Tang W, Lu W J, Zhu X B, Yang Z R and Song W H 2009 Appl. Phys. Lett. 95 222509
[3] Tohei T, Wada H and Kanomata T 2003 J. Appl. Phys. 94 1800
[4] Yu M H, Lewis L H and Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
[5] Tohei T, Wada H and Kanomata T 2004 J. Magn. Magn. Mater. 272 E585
[6] Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Zhang S B, Zhu X D, Yang Z R, Dai J M and Song W H 2009 Europhys. Lett. 85 47004
[7] Takenaka K, Asano K, Misawa M and Takagi H 2008 Appl. Phys. Lett. 92 011927
[8] Tong P, Louca D, Kingdom G, Liobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
[9] Iikubo S, Kodama K, Takenaka K, et al. 2008 Phys. Rev. Lett. 101 205901
[10] Takenaka K and Takagi H 2009 Appl. Phys. Lett. 94 131904
[11] J Huang R, Li L F, Cai F S, Xu X D and Qian L H 2008 Appl. Phys. Lett. 93 081902
[12] Ding L, Wang C, Sun Y, Colin C V and Chu L H 2015 J. Appl. Phys. 117 213915
[13] Guo X G, Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406
[14] Shimizu T, Shibayama T, Asano K and Takenaka 2012 J. Appl. Phys. 111 07A903
[15] Guo X G, Tong P, Lin J C, Yang C, Zhang K, Lin S, Song W H and Sun Y P 2017 Appl. Phys. Lett. 110 062405
[16] Asano K, Koyama K and Takenaka K 2008 Appl. Phys. Lett. 92 161909
[17] Kim W S, Chi E O, et al. 2001 Solid State Commun. 119 507
[18] Shim J H, Kwon S K and Min B I 2002 Phys. Rev. B 66 020406(R)
[19] Fruchart D, Bertaut E F, Sayetat F, et al. 1970 Solid State Commun. 8 91
[20] Wang B S, Tong P, Sun Y P, Zhu X B, Luo X, Li G, Song W H, Yang Z Rand Dai J M 2009 J. Appl. Phys. 105 083907
[21] Cabassi R, Bolzoni F, Gauzzi A and Licci F 2006 Phys. Rev. B 74 184425
[22] Yang J, Lee Y P and Li Y 2007 Phys. Rev. B 76 054442
[23] Lin J C, Tong P, Cui D P, Yang C, Yang J, Lin S, Wang B S, Tong W, Zhang L, Zou Y M and Sun Y P 2015 Scr. Rep. 5 7933
[24] Cui D P, Wang B S, Tong P, Lin J C, Lin S and Sun Y P 2015 J. Magn. Magn. Mater. 382 93
[25] Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L and Zhang Y H 2012 Phys. Rev. B 85 104419
[26] Babu P D and Kaul S N 1997 J. Phys.: Condens. Matter 9 7189
[27] Pramanik A K and Banerjee A 2009 Phys. Rev. B 79 214426
[28] Yang J, Lee Y P and Li Y 2007 J. Appl. Phys. 102 033913
[29] Amaral V S and Amaral J S 2004 J. Magn. Magn. Mater. 272-276 2104
[30] Lu W J, Luo X, Hao C Y, Song W H and Sun Y P 2008 J. Appl. Phys. 104 113908
[31] Amaral J S, Silva N J O and Amaral V S 2007 Appl. Phys. Lett. 91 172503
[32] Amaral J S and Amaral V S 2009 Appl. Phys. Lett. 94 042506
[33] Banerjee S K 1964 Phys. Lett. 12 16
[34] Landau L D and Lifshitz E M 1980 Statistical Physica 3rd Edn. (Oxford: Pergamon)
[35] Amaral J S, Reis M S, et al. 2005 J. Magn. Magn. Mater. 290-291 686
[36] Yang J, Sun Y P, Song W H and Lee Y P 2006 J. Appl. Phys. 100 123701
[37] Bean C P and Rodbell D S 1962 Phys. Rev. 126 104
[38] Menyuk N, Dwight K and Reed T B 1971 Phys. Rev. B 3 1689
[39] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[40] Yang F Y, Chien C L, Li X W, Xiao G and Gupta A 2001 Phys. Rev. B 63 092403
[41] Yanagihara H, Cheong W, et al. 2002 Phys. Rev. B 65 092411
[42] Gschneidner Jr. K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[43] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and its Applications (Bristol: Institute of Physics Publishing)
[44] Stanley H E 1972 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon Press)
[45] Fisher M E 1967 Rep. Prog. Phys. 30 615
[46] Mira J, Rivas J, et al. 1999 Phys. Rev. B 60 2998
[47] Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626
[48] Widom B 1964 J. Chem. Phys. 41 1633
[49] Widom B 1965 J. Chem. Phys. 43 3898
[50] Stanley H E 1999 Rev. Mod. Phys. 71 S358
[51] Huang K 1987 Statistical Mechanics 2nd Edn. (New York: Wiley)
[52] Le J C and Zinn-Justin J 1980 Phys. Rev. B 21 3976
[53] Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett. 29 917
[1] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[2] Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳). Chin. Phys. B, 2020, 29(6): 067503.
[3] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[4] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[5] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[6] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[7] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[8] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[9] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[10] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[11] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[12] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[13] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
[14] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[15] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
No Suggested Reading articles found!