Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058102    DOI: 10.1088/1674-1056/ab7d97
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution

Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi
School of Physics, College of Science, University of Tehran, Tehran, Iran
Abstract  Structural and morphological changes as well as corrosion behavior of N+ implanted Al in 0.6 M NaCl solution as function of N+ fluence are investigated. The x-ray diffraction results confirmed AlN formation. The atomic force microscope (AFM) images showed larger grains on the surface of Al with increasing N+ fluence. This can be due to the increased number of impacts of N+ with Al atoms and energy conversion to heat, which increases the diffusion rate of the incident ions in the target. Hence, the number of the grain boundaries is reduced, resulting in corrosion resistance enhancement. Electrochemical impedance spectroscopy (EIS) and polarization results showed the increase of corrosion resistance of Al with increasing N+ fluence. EIS data was used to simulate equivalent electric circuits (EC) for the samples. Strong dependence of the surface morphology on the EC elements was observed. The scanning electron microscope (SEM) analysis of the samples after corrosion test also showed that the surfaces of the implanted Al samples remain more intact relative to the untreated Al sample, consistent with the EIS and polarization results.
Keywords:  aluminium      ion implantation      surface morphology      corrosion      electrochemical impedance spectroscopy      polarization  
Received:  09 December 2019      Revised:  17 February 2020      Published:  05 May 2020
PACS:  81.65.Kn (Corrosion protection)  
  82.45.Bb (Corrosion and passivation)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  61.05.cp (X-ray diffraction)  
Corresponding Authors:  Hadi Savaloni     E-mail:  savaloni@khayam.ut.ac.ir

Cite this article: 

Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution 2020 Chin. Phys. B 29 058102

[1] Möller W, Parascandola S, Telbizova T, Günzel R and Richter E 2001 Surf. Coat. Technol. 136 73
[2] Liu Y, Li L, Xu M, Cai X, Chen Q, Hu Y and Chu R K 2006 Mater. Sci. Eng. A 415 140
[3] Sherif M E, Abdo H S, Khalil K A and Nabawy A M 2015 Metals. 5 1799
[4] Bockris J O M and Kang Y 1997 J. Solid. State. Electrochem. 1 17
[5] Sherif E M, Ammar H R and Khalil K A 2015 Int. J. Electrochem. Sci. 10 775
[6] Fogagnolo J B, Velasco F, Robert M H and Torralba J M 2003 Mater. Sci. Eng. A 342 131
[7] Sherif E M, Ammar H R and Khalil K A 2014 Appl. Surf. Sci. 301 142
[8] Despić A R, Dražić D M, Purenović M M and Ciković N 1976 J. Appl. Electrochem 6 527
[9] Sherif E M 2011 Int. J. Electrochem. Sci. 6 1479
[10] Sherif E M 2013 J. Ind. Eng. Chem. 19 1884
[11] Foley R T and Nguyen T H 1982 J. Electrochem. Soc. 129 464
[12] Asaduzzaman M D, Mohammad C M and Mayeedul I 2011 Chem. Ind Chem. Eng. Q 17 477
[13] Ibrahim M A M, Abd El Rehim S S and Hamza M M 2009 Mater. Chem. Phys. 115 80
[14] Khandanjou S H, Ghoranevss M, Saviz S H and Afshar R 2018 Chin. Phys. B 27 028104
[15] Feng X, Lei J, Gu H and Zhou S 2019 Chin. Phys. B 28 026802
[16] Groysman A 2010 Corrosion for everybody (Germany: Springer)
[17] Meletis E I, Nie X, Wang F L and Jiang J C 2002 Surf. Coat. Technol. 150 246
[18] Frignani A, Zucchi F, Trabanelli G and Grassi V 2006 Corros. Sci. 48 2258
[19] Liu T, Zhang F, Xue C, Li L and Yin Y 2010 Surf. Coat. Technol. 205 2335
[20] Dai L, Bi D, Hu Z, Liu X, Zhang M, Zhang Z and Zou S 2018 Chin. Phys. B 27 048503
[21] Booske J H, Zhang L, Wang W, Mente K, Zjaba N, Baum C and Shohet J 1997 J. Mater. Res. 12 1356
[22] Zhang L, Booske J H and Shohet J L 1995 Mater. Lett. 22 29
[23] McCafferty E 2001 Corros. Rev. 57 1011
[24] Gunzel R, Wieser E, Richter E and Steffen J 1994 J. Vac. Sci. Technol. B. 12 927
[25] Walter K C 1994 J. Vac. Sci. Technol. B 12 945
[26] Lucas S and Chevallier J 1994 Surf. Coat. Technol. 65 128
[27] Fayeulle S 1998 Defect. Diffus. Forum. 57 327
[28] Rondelli G, Vicentini B and Cigada A 1995 Mater. Corros. 46 628
[29] Xia L, Wang R, Ma X and Sun Y 1994 J. Vac. Sci. Technol. B. 12 931
[30] Lucas S, Chevallier J and Chechenin N G 1994 Surf. Coat. Technol. 66 334
[31] Guzman L, Bonim G, Adami M, Ossi P M, Miotello A, Vittori-Antisari M, Serventi A M and Voltolini E 1996 Surf. Coat. Technol. 83 284
[32] Jervis T R, Lu H L and Tesmer J R 1992 Nucl. Instr. Methods B 72 59
[33] Lin C, Li Y, Kilner J A, Chater R J, Li J, Zhang J P and Hemment P L F 1993 Nucl. Instr. Methods B 80 323
[34] Rodriguez R J, Sanz A, Medrano A and Garsia-Lorente J A 1999 Vacuum 52 187
[35] Abreu C M, Cristobal M J, Figueroa R and Pena G 2015 Appl. Surf. Sci. 327 51
[36] Walter K C, Dodd R A and Conrad J R 1995 Nucl. Instrum. Methods. Phys. Res. B 106 522
[37] Manova D, Schreck M, Mändl S, Stritzker B and Rauschenbach B 2002 Surf. Coat. Technol. 151-152 72
[38] Bilek M M, McKenzie D R, Tarrant R N, Oates T W, Ruch P, Newton-McGee K, Shi Y, Tompsett D, Nguyen H C, Gan B K and Kwok D 2004 Contrib. Plasma. Phys. 44 465
[39] Saklakoglu I E 2009 J. Mater. ProcessTechnol. 209 1796
[40] Richter E, Günzel R, Parasacandola S, Telbizova T, Kruse O and Moller W 2000 Surf. Coat. Technol. 128-129 21
[41] Budzynski P, Youssef A A, Surowiec Z and Paluch R P 2007 Vacuum 81 1154
[42] Piette M, Terwagne G, Moller W and Bodart F 1989 Mater. Sci. Eng. B. 2 189
[43] Schoser S, Bräuchle G, Forget J, Kohlhof K, Weber T, Voigt J and Rauschenbach R 1998 Surf. Coat. Technol. 103-104 222
[44] Stansbury E E and Buchanan R A 2000 Fundamentals of Electrochemcal Corrosion (Ohio: ASM International)
[45] Poorqasemi E, Abootalebi O, Peikari M and Haqdar F 2009 Corros. Sci. 51 1043
[46] Khojier K and Savaloni H 2009 Vacuum 84 770
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[3] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[4] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[5] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[6] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[7] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[8] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[9] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[10] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[11] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[12] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[13] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[14] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[15] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
No Suggested Reading articles found!