Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 043206    DOI: 10.1088/1674-1056/ab7d94
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers

Jian-Hua Liu(刘建华)1,3, Dong-Yang Jing(靖东洋)1,2, Lin Zhuang(庄琳)4, Wei Quan(全伟)5, Jiancheng Fang(房建成)5, Wu-Ming Liu(刘伍明)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 School of Science, Beijing Technology and Business University, Beijing 100048, China;
4 School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
5 School of Instrument Science and Opto-Electronics Engineering, and Science and Technology on Inertial Laboratory, Beihang University, Beijing 100191, China
Abstract  The hybrid optical pumping spin exchange relaxation free (HOPSERF) atomic co-magnetometers make ultrahigh sensitivity measurement of inertia achievable. The wall relaxation rate has a big effect on the polarization and fundamental sensitivity for the co-magnetometer, but it is often neglected in the experiments. However, there is almost no work about the systematic analysis of the influence factors on the polarization and the fundamental sensitivity of the HOPSERF co-magnetometers. Here we systematically study the polarization and the fundamental sensitivity of 39K-85Rb-21Ne and 133Cs-85Rb-21Ne HOPSERF co-magnetometers with low polarization limit and the wall relaxation rate. The 21Ne number density, the power density and wavelength of pump beam will affect the polarization greatly by affecting the pumping rate of the pump beam. We obtain a general formula on the fundamental sensitivity of the HOPSERF co-magnetometers due to shot-noise and the fundamental sensitivity changes with multiple systemic parameters, where the suitable number density of buffer gas and quench gas make the fundamental sensitivity highest. The fundamental sensitivity 7.5355×10-11 rad·-1·Hz-1/2 of 133Cs-85Rb-21Ne co-magnetometer is higher than the ultimate theoretical sensitivity 2×10-10 rad·-1·Hz-1/2 of K-21Ne co-magnetometer.
Keywords:  hybrid optical pumping spin exchange relaxation free      co-magnetometer      wall relaxation rate  
Received:  11 October 2019      Revised:  28 February 2020      Accepted manuscript online: 
PACS:  32.80.Xx (Level crossing and optical pumping)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  42.60.Rn (Relaxation oscillations and long pulse operation)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant No. 61835013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300).
Corresponding Authors:  Wu-Ming Liu     E-mail:  wliu@iphy.ac.cn

Cite this article: 

Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明) Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers 2020 Chin. Phys. B 29 043206

[1] Schreiber K U, Klügel T, Wells J P, Hurst R B and Gebauer A 2011 Phys. Rev. Lett. 107 173904
[2] Schreiber K U and Wells J P R 2013 Rev. Sci. Instrum. 84 041101
[3] Shahriar M S and Salit M 2008 J. Mod. Opt. 55 3133
[4] Stedman G E 1997 Rep. Prog. Phys. 60 615
[5] Everitt C W F, DeBra D B, Parkinson B W et al 2011 Phys. Rev. Lett. 106 221101
[6] Lefevre H C 2013 Opt. Fiber. Technol. 19 828
[7] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[8] Kornack T W, Ghosh R K and Romalis M V 2005 Phys. Rev. Lett. 95 230801
[9] Meyer D and Larsen M 2014 Gyroscopy Navigation 5 75
[10] Brown J M, Smullin S J, Kornack T W, Romalis M V 2010 Phys. Rev. Lett. 105 151604
[11] Smiciklas M, Brown J M, Cheuk L W, Smullin S J and Romalis M V 2011 Phys. Rev. Lett. 107 171604
[12] Vasilakis G, Brown J M, Kornack T W and Romalis M V 2009 Phys. Rev. Lett. 103 261801
[13] Tullney K, Allmendinger F, Burghoff M, Heil W, Karpuk S, Kilian W, Knappe-Grüneberg S, Müller W, Schmidt U, Schnabel A, Seifert F, Sobolev Y and Trahms L 2013 Phys. Rev. Lett. 111 100801
[14] Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Walker T G, Fu C B, Smith E, Snow W M and Yan H 2013 Phys. Rev. Lett. 111 102001
[15] Arvanitaki A and Geraci A A 2014 Phys. Rev. Lett. 113 161801
[16] Rosenberry M A and Chupp T E 2001 Phys. Rev. Lett. 86 22
[17] Kornack T W 2005 A test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer (PhD Dissertation) (New Jersey: Princeton University)
[18] Fang J C, Wan S A, Qin J, Zhang C, Quan W, Yuan H and Dong H F 2013 Rev. Sci. Instrum. 84 083108
[19] Zeng X, Wu Z, Call T, Miron E, Schreiber D and Happer W 1985 Phys. Rev. A 31 260
[20] Jiang L W, Quan W, Li R J, Duan L H, Fan W F, Wang Z, Liu F, Xing L and Fang J C 2017 Phys. Rev. A 95 062103
[21] Jiang L W, Quan W, Li R J, Fan W F and Fang J C 2018 Appl. Phys. Lett. 112 054103
[22] Quan W, Wei K, Zhao T, Li H R, Zhai Y Y 2019 Phys. Rev. A 100 012118
[23] Jiang L W, Quan W, Liu F, Fan W F, Xing L, Duan L H, Liu W M and Fang J C 2019 Phys. Rev. Appl. 12 024017
[24] Liu J H, Jing D Y, Wang L L, Li Y, Quan W, Fang J C and Liu W M 2017 Sci. Rep. 7 6776
[25] Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Quart. 23 309
[26] Ito Y, Sato D, Kamada K and Kobayashi T 2016 Opt. Express 24 015391
[27] Seltzer S J 2008 PhD Dissertation (New Jersey: Princeton University)
[28] Happer W and Tam A C 1977 Phys. Rev. A 16 1877
[29] Dong H F, Xuan L F, Zhuo C and Lin H B 2012 J. Test Measurement Technol. 26 468 (in Chinese)
[30] Babcock E, Nelson I, Kadlecek S, Driehuys B, Anderson L W, Hersman F W and Walker T G 2003 Phys. Rev. Lett. 91 123003
[31] Romalis M V, Miron E and Cates G D 1997 Phys. Rev. A 56 4569
[32] Citron M L, Gray H R, Gabel C W and Stroud C R 1977 Phys. Rev. A 16 1507
[33] Cole H R and Olson R E 1985 Phys. Rev. A 31 2137
[34] Fang J C, Wang T, Zhang H, Li Y and Zou S 2014 Rev. Sci. Instrum. 85 123104
[35] Chen Y, Quan W, Duan L H, Lu Y, Jiang L W and Fang J C 2016 Phys. Rev. A 94 052705
[36] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[37] Schaefer S R, Cates G D, Chien T R, Gonatas D, Happer W and Walker T G 1989 Phys. Rev. A 39 5613
[38] Ghosh R K and Romalis M V 2010 Phys. Rev. A 81 043415
[39] Franz F A and Volk C 1982 Phys. Rev. A 26 85
[40] Franz F A and Sooriamoorthi C E 1974 Phys. Rev. A 10 126
[41] Franz F A and Volk C 1976 Phys. Rev. A 14 1711
[42] Silver J A 1984 J. Chem. Phys. 81 5125
[43] Fang J C, Chen Y, Zou S, Liu X J, Hu Z H, Quan W, Yuan H, Ding M 2016 J. Phys. B 49 065006
[44] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408
[45] Hager G D, Lott G E, Archibald A J, Blank L, Weeks D E and Perram G P 2014 J. Quant. Spectrosc. Radiat. Transf. 147 261
[46] Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
[47] Migdalek J and Kim Y K 1998 J. Phys. B 31 1947
[48] Caliebe E and Niemax K 1979 J. Phys. B 12 L45
[49] Lwin N and McCartan D G 1978 J. Phys. B 11 3841
[50] Appelt A, Baranga B A, Erickson C J, Romalis M V, Young A R and Happer W 1998 Phys. Rev. A 58 1412
[51] Gibbs H M and Hull R J 1967 Phys. Rev. 153 132
[52] Ressler N W, Sands R H and Stark T E 1969 Phys. Rev. 184 102
[53] Shao W J, Wang G D and Hughes E W 2005 Phys. Rev. A 72 022713
[54] Quan W, Li Y and Liu B 2015 Europhys. Lett. 110 60002
[55] Aleksandrov E B, Balabas M V, Vershovskii A K, Okunevich A I and Yakobson N N 1999 Opt. Spectrosc. 87 329
[56] Franzen W 1959 Phys. Rev. 115 850
[57] Beverini N, Minguzzi P and Strumia F 1972 Phys. Rev. A 5 993
[58] Kadlecek S, Anderson L W and Walker T 1998 Nucl. Instrum. Methods Phys. Res. 402 208
[59] Fang J C and Qin J 2012 Sensors 12 6331
[60] Fang J C, Li R J, Duan L H, Chen Y and Quan W 2015 Rev. Sci. Instrum. 86 073116
[61] Chen Y, Quan W, Zou S, Lu Y, Duan L H, Li Y, Zhang H, Ding M and Fang J C 2016 Sci. Rep. 6 36547
[62] Vliegen E, Kadlecek S, Anderson L W, Walker T G, Erickson C J and Happer W 2001 Nucl. Instrum. Methods Phys. Res. A 460 444
[63] Bhaskar N D, Pietras J, Camparo J, Happer W and Liran J 1980 Phys. Rev. Lett. 44 930
[1] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[2] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[3] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[4] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[5] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[6] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[7] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[8] Laser frequency offset-locking using electromagnetically induced transparency spectroscopy of 85Rb in magnetic field
Han-Mu Wang(王汉睦), Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(9): 094205.
[9] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[10] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
[11] Retraction: Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(11): 113301.
[12] Indirect pumping bell-bloom magnetometer
Meng-Bing Wang(王梦冰), Da-Fa Zhao(赵大法), Gui-Ying Zhang(张桂迎), Kai-Feng Zhao(赵凯锋). Chin. Phys. B, 2017, 26(10): 100701.
[13] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[14] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[15] Study of the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell-Bloom magnetometers
Mei-Ling Wang(王美玲), Meng-Bing Wang(王梦冰), Gui-Ying Zhang(张桂迎), Kai-Feng Zhao(赵凯锋). Chin. Phys. B, 2016, 25(6): 060701.
No Suggested Reading articles found!