Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 044201    DOI: 10.1088/1674-1056/ab7b55
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dissipative quantum phase transition in a biased Tavis-Cummings model

Zhen Chen(陈臻)1,2, Yueyin Qiu(邱岳寅)3, Guo-Qiang Zhang(张国强)2, Jian-Qiang You(游建强)2
1 Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China;
2 Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China;
3 Laboratory of Quantum Information, Institute for Quantum Information and Spintronics, School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  We study the dissipative quantum phase transition (QPT) in a biased Tavis-Cummings model consisting of an ensemble of two-level systems (TLSs) interacting with a cavity mode, where the TLSs are pumped by a drive field. In our proposal, we use a dissipative TLS ensemble and an active cavity with effective gain. In the weak drive-field limit, the QPT can occur under the combined actions of the loss and gain of the system. Owing to the active cavity, the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble. Also, we propose to implement our scheme based on the dissipative nitrogen-vacancy (NV) centers coupled to an active optical cavity made from the gain-medium-doped silica. Furthermore, we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.
Keywords:  quantum phase transition      dissipative ensemble of two-level systems      active optical cavity      Tavis-Cummings model  
Received:  03 January 2020      Revised:  04 February 2020      Published:  05 April 2020
PACS:  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934010, U1801661, U1930402, and 11847087) and the National Key Research and Development Program of China (Grant No. 2016YFA0301200).
Corresponding Authors:  Guo-Qiang Zhang, Jian-Qiang You     E-mail:  zhangguoqiang3@zju.edu.cn;jqyou@zju.edu.cn

Cite this article: 

Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强) Dissipative quantum phase transition in a biased Tavis-Cummings model 2020 Chin. Phys. B 29 044201

[1] Zhang J, Chang C Z, Tang P, Zhang Z, Feng X, Li K, Wang L, Chen X, Liu C, Duan W, He K, Xue Q K, Ma X and Wang Y 2013 Science 339 1582
[2] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[3] Mebrahtu H T, Borzenets I V, Liu D E, Zheng H, Bomze Y V, Smirnov A I, Baranger H U and Finkelstein G 2012 Nature 488 61
[4] Nataf P and Ciuti C 2010 Phys. Rev. Lett. 104 023601
[5] Lü X Y, Zhu G L, Zheng L L and Wu Y 2018 Phys. Rev. A 97 033807
[6] Lü X Y, Zheng L L, Zhu G L and Wu Y 2018 Phys. Rev. Appl. 9 064006
[7] Wang Y, You W L, Liu M, Dong Y L, Luo H G, Romero G and You J Q 2018 New J. Phys. 20 053061
[8] Jaako T, Xiang Z L, Garcia-Ripoll J J and Rabl P 2016 Phys. Rev. A 94 033850
[9] Li Y, Wang Z D and Sun C P 2006 Phys. Rev. A 74 023815
[10] Xu X W, Liu Y X, Sun C P and Li Y 2015 Phys. Rev. A 92 013852
[11] Bamba M, Inomata K and Nakamura Y 2016 Phys. Rev. Lett. 117 173601
[12] Tong Q J, An J H, Luo H G and Oh C H 2011 Phys. Rev. B 84 174301
[13] Liu H B, An J H, Chen C, Tong Q J, Luo H G and Oh C H 2013 Phys. Rev. A 87 052139
[14] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[15] Hwang M J and Plenio M B 2016 Phys. Rev. Lett. 117 123602
[16] Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B 22 110309
[17] Deng H X, Song Z G, Li S S, Wei S H and Luo J W 2018 Chin. Phys. Lett. 35 057301
[18] Qin M, Ren Z and Zhang X 2018 Chin. Phys. B 27 060301
[19] Zhao J, Liu Y, Wu L, Duan C K, Liu Y X and Du J 2020 Phys. Rev. Appl. 13 014053
[20] Dicke R H 1954 Phys. Rev. 93 99
[21] Hepp K and Lieb E H 1973 Phys. Rev. A 8 2517
[22] Duncan G C 1974 Phys. Rev. A 9 418
[23] Hepp K and Lieb E H 1973 Ann. Phys. (N. Y.) 76 360
[24] Wang Y K and Hioe F T 1973 Phys. Rev. A 7 831
[25] Emary C and Brandes T 2003 Phys. Rev. E 67 066203
[26] Emary C and Brandes T 2003 Phys. Rev. Lett. 90 044101
[27] Lian J L, Zhang Y W and Liang J Q 2012 Chin. Phys. Lett. 29 060302
[28] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) p. 121
[29] Tavis M and Cummings F W 1968 Phys. Rev. 170 379
[30] Castaños O, López-Peña R, Nahmad-Achar E, Hirsch J G, López-Moreno E and Vitela J E 2009 Phys. Scr. 79 065405
[31] Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Phys. Rev. A 75 013804
[32] Nagy D, Kónya G, Szirmai G and Domokos P 2010 Phys. Rev. Lett. 104 130401
[33] Lu W J, Li Z and Kuang L M 2018 Chin. Phys. Lett. 35 116401
[34] Zou J H, Liu T, Feng M, Yang W L, Chen C Y and Twamley J 2013 New J. Phys. 15 123032
[35] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301
[36] Baumann K, Mottl R, Brennecke F and Esslinger T 2011 Phys. Rev. Lett. 107 140402
[37] Brennecke F, Mottl R, Baumann K, Landig R, Donner T and Esslinger T 2013 Proc. Natl. Acad. Sci. USA 110 11763
[38] Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J and Wang H 2015 Nat. Commun. 6 7111
[39] Keeling J, Bhaseen M J and Simons B D 2010 Phys. Rev. Lett. 105 043001
[40] Soriente M, Donner T, Chitra R and Zilberberg O 2018 Phys. Rev. Lett. 120 183603
[41] Larson J and Irish E K 2017 J. Phys. A 50 174002
[42] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[43] He L, Özdemir Ş K, Xiao Y F and Yang L 2010 IEEE J. Quantum Electron. 46 1626
[44] He L, Özdemir Ş K, Zhu J and Yang L 2010 Phys. Rev. A 82 053810
[45] Park Y S, Cook A K and Wang H 2006 Nano Lett. 6 2075
[46] Schietinger S, Schroder T and Benson O 2008 Nano Lett. 8 3911
[47] Larsson M, Dinyari K N and Wang H 2009 Nano Lett. 9 1447
[48] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[49] Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lü X Y, Li C W, Yang L, Nori F and Liu Y X 2016 Phys. Rev. Lett. 117 110802
[50] Chen Q, Yang W, Feng M and Du J 2011 Phys. Rev. A 83 054305
[51] Cheng L Y, Wang H F, Zhang S and Yeon K H 2013 Opt. Express 21 5988
[52] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
[53] Chen Z, Wang Y, Li T, Tian L, Qiu Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S and You J Q 2017 Phys. Rev. A 96 012325
[1] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[2] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[3] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[4] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[5] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
[6] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[7] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[8] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[9] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[10] Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures
Majeed Ur Rehman, A A Abid. Chin. Phys. B, 2017, 26(12): 127304.
[11] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[12] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[13] Quantum information entropy for one-dimensional system undergoing quantum phase transition
Xu-Dong Song(宋旭东), Shi-Hai Dong(董世海), Yu Zhang(张宇). Chin. Phys. B, 2016, 25(5): 050302.
[14] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
[15] Ground-state information geometry and quantum criticality in an inhomogeneous spin model
Ma Yu-Quan. Chin. Phys. B, 2015, 24(9): 090301.
No Suggested Reading articles found!