Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046801    DOI: 10.1088/1674-1056/ab790b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy

Yi Wang(王一)1,2, Xiang Guo(郭祥)1,2,3, Jiemin Wei(魏节敏)2, Chen Yang(杨晨)1,3,4, Zijiang Luo(罗子江)1,4, Jihong Wang(王继红)1, Zhao Ding(丁召)1,2,3
1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, China;
3 Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, China;
4 School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
Abstract  GaAs multiple concentric nano-ring structures (CNRs) are prepared with multistep crystallization procedures by droplets epitaxy on GaAs (001) to explore the influence of different initial crystallization temperatures on CNRs morphology. Atomic force microscope (AFM) images show that GaAs nanostructures are more likely to form elliptical rings due to diffusion anisotropy. Meanwhile, with the increase of initial crystallization temperature, the inner ring height and density of CNRs are increased, and outer rings are harder to form. In addition, the mechanism of formation of CNRs is discussed by classical nucleation theory and diffusion theory. The method can be used to calculate the diffusion activation energy of gallium atoms (0.7±0.1 eV) on the GaAs (001) surface conveniently.
Keywords:  concentric nano-ring structures      crystallization temperature      activation energy of diffusion  
Received:  17 January 2020      Revised:  18 February 2020      Published:  05 April 2020
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  61.46.-w (Structure of nanoscale materials)  
  65.40.gp (Surface energy)  
  81.10.Pq (Growth in vacuum)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002 and 11664005), the Science and Technology Foundation of Guizhou Province, China (Grant No. QKH-[2017]1055), and Guizhou University Talent Foundation (Grant No. GDJHZ-[2015]23).
Corresponding Authors:  Zhao Ding     E-mail:  zding@gzu.edu.cn

Cite this article: 

Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召) Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy 2020 Chin. Phys. B 29 046801

[1] Barseghyan M G, Manaselyan A K, Larozec D and Kirakosyan A A 2016 Physica E 81 31
[2] Zhao Z Y, Min Y and Huang Y Y 2019 Physica E 114 113589
[3] Li H D, Wang Y, Liu S H, Kang X B, Ding J and Hao H S 2018 J. Appl. Phys. 124 085103
[4] Zhao X, Zheng J, Yuan R Y and Guo Y 2019 Curr. Appl. Phys. 19 447
[5] Somaschini C, Bietti S, Koguchi N and Sanguinetti S 2009 Nano Lett. 9 3419
[6] Dias da Silva L G G V M, Villas-Boas J and Ulloa S E 2007 Phys. Rev. B 76 155306
[7] Yi G Y, Wang X Q, Gong W J, Wu H N and Chen X H 2016 Phys. Lett. A 380 1385
[8] Barseghyan M G, Kirakosyan A A and Laroze D 2017 Opt. Commun. 383 571
[9] Spirina A A and Shwartz N L 2019 Mat. Sci. Semicon. Proc. 100 319
[10] Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S and Ratanathammaphan S 2011 J. Cryst. Growth 323 271
[11] Mano T, Kuroda T, Sanguinetti S, Ochiai T, Tateno T, KimJ, Noda T, Kawabe M, Sakoda K, Kido G and Koguchi N 2005 Nano Lett. 5 425
[12] Somaschini C, Bietti S, Sanguinetti S, Koguchi N and Fedorov A 2010 Nanotechnology 21 125601
[13] Somaschini C, Bietti S, Fedorov A, Koguchi N and Sanguinetti S 2010 Nanoscale Res. Lett. 5 1865
[14] Venables J A, Persaud R, Metcalfe F L, Milne R H and Azim M 1994 J. Phys. Chem. Solids 55 955
[15] Venables J A 1987 Phys. Rev. B 36 4153
[16] Venables J A, Spiller G D T and Hanbucken M 1984 Rep. Prog. Phys. 47 399
[17] Li Z H, Ding Z, Tang J W, Wang Y, Luo Z J, Ma M M, Huang Y B, Zhang Z D and Guo X 2010 J. Phys. Chem. C 114 15343
[18] Li X L 2010 J. Phys. Chem. C 114 15343
[19] Li X L 2013 J. Cryst. Growth 377 59
[20] Neave J H, Dobson P J, Joyce B A and Zhang J 1985 Appl. Phys. Lett. 47 100
[21] Koshiba S, Nakamura Y, Tsuchiya M, Noge H, Kano H, Nagamune Y, Noda T and Sakaki H 1994 J. Appl. Phys. 76 4138
[22] Labella V P, Bullock D W, Ding Z, Emery C, Harter W G and Thibado P M 2000 J. Vac. Sci. Technol. A 18 1526
[23] Deluca P M, Lananda J G C and Barnett S A 1999 Appl. Phys. Lett. 74 1719
[1] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[2] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[3] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[4] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[5] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[6] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[7] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[8] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[9] Pressure-mediated contact quality improvement between monolayer MoS2 and graphite
Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017301.
[10] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[11] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
[12] Spin detection and manipulation with scanning tunneling microscopy
Chunlei Gao(高春雷). Chin. Phys. B, 2018, 27(10): 106701.
[13] Spin manipulation in semiconductor quantum dots qubit
Ke Wang(王柯), Hai-Ou Li(李海欧), Ming Xiao(肖明), Gang Cao(曹刚), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(9): 090308.
[14] Surface effects on the thermal conductivity of silicon nanowires
Hai-Peng Li(李海鹏), Rui-Qin Zhang(张瑞勤). Chin. Phys. B, 2018, 27(3): 036801.
[15] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
No Suggested Reading articles found!