Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048505    DOI: 10.1088/1674-1056/ab77fd

A method of generating random bits by using electronic bipolar memristor

Bin-Bin Yang(杨彬彬)1,2, Nuo Xu(许诺)2, Er-Rui Zhou(周二瑞)1,2, Zhi-Wei Li(李智炜)3, Cheng Li(李成)1,2, Pin-Yun Yi(易品筠)1,2, Liang Fang(方粮)1,2
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China;
2 College of Computer, National University of Defense Technology, Changsha 410073, China;
3 College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The intrinsic stochasticity of resistance switching process is one of the holdblocks for using memristor as a fundamental element in the next-generation nonvolatile memory. However, such a weakness can be used as an asset for generating the random bits, which is valuable in a hardware security system. In this work, a forming-free electronic bipolar Pt/Ti/Ta2O5/Pt memristor is successfully fabricated to investigate the merits of generating random bits in such a device. The resistance switching mechanism of the fabricated device is ascribed to the electric field conducted electrons trapping/de-trapping in the deep-energy-level traps produced by the “oxygen grabbing” process. The stochasticity of the electrons trapping/de-trapping governs the random distribution of the set/reset switching voltages of the device, making a single memristor act as a random bit in which the resistance of the device represents information and the applied voltage pulse serves as the triggering signal. The physical implementation of such a random process provides a method of generating the random bits based on memristors in hardware security applications.
Keywords:  memristor      resistance switching      electrons trapping/de-trapping      random bits  
Received:  15 September 2019      Revised:  23 January 2020      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  77.80.Fm (Switching phenomena)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61832007) and the National Key Research and Development Program of China (Grant No. 2018YFB1003304).
Corresponding Authors:  Nuo Xu, Liang Fang     E-mail:;

Cite this article: 

Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮) A method of generating random bits by using electronic bipolar memristor 2020 Chin. Phys. B 29 048505

[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[4] Zhou E R, Fang L and Yang B B 2018 Electronics 7 396
[5] Zhou E R, Fang L, Liu R L and Tang Z S 2017 Chin. Phys. B 26 118502
[6] Li Z W, Chen P Y, Xu H and Yu S M 2017 IEEE Trans. Electron Dev. 64 2721
[7] Liu T Y, Yan T H, Scheuerlein R, et al. 2013 IEEE Int. Solid-State Circuits Conf. 432-434 210-212
[8] Li Z W, Chen P Y, Liu H J, Li Q J, Xu H and Yu S M 2017 IEEE Trans. Electron Dev. 64 1568
[9] Zhou J, Yang X J, Wu J J, Zhu X, Fang X D and Huang D 2014 Sci. Chin. 57 1
[10] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[11] Xu N, Yoon K J, Kim K M, Fang L and Hwang C S 2018 Adv. Electron. Mater. 4 1800189
[12] Xu N, Fang L, Kim K M and Hwang C S 2019 Phys. Status Solidi RRL 13 1900033
[13] Kim K M, Xu N, Shao X, Yoon K J, Kim H J, Williams R S and Hwang C S 2019 Phys. Status Solidi RRL 13 1800629
[14] Zhu X, Yang X J, Wu C Q, Xiao N, Wu J J and Yi X 2013 IEEE Trans. Circ. Systems II: Express Briefs 60 682
[15] Pickett M D and Williams R S 2012 Nanotechnology 23 215202
[16] Torrezan A C, Strachan J P, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 485203
[17] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
[18] Pi S, Lin P and Xia Q F 2013 J. Vac. Sci. Technol. B 31 06FA02
[19] Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X M, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G and Williams R S 2009 Nano Lett. 9 3640
[20] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[21] Yang J J, Strachan J P, Xia Q F, Ohlberg D A A, Kuekes P J, Kelley R D, Stickle W F, Stewart D R, Medeiros-Ribeiro G and Williams R S 2010 Adv. Mater. 22 4034
[22] Zhang H W, Liu L F, Gao B, Qiu Y J, Liu X Y, Lu J, Han R Q, Kang J F and Yu B 2011 Appl. Phys. Lett. 98 042105
[23] Prakash A, Maikap S, Lai C S, Lee H Y, Chen W S, Chen F T, Kao M J and Tsai M J 2012 Jpn. J. Appl. Phys. 51 04DD06
[24] Chen Y T, Chang T C, Peng H K, Tseng H C, Huang J J, Yang J B, Chu A K, Young T F and Sze S M 2013 Appl. Phys. Lett. 102 252902
[25] Gaba S, Sheridan P, Zhou J T, Choi S and Lu W 2013 Nanoscale 5 5872
[26] Chen A 2015 IEEE Electron Dev. Lett. 36 138
[27] Liu R, Wu H Q, Pang Y C, Qian H and Yu S M 2015 IEEE Electron Dev. Lett. 36 1380
[28] Jiang H, Belkin D, Savel'ev S E, Lin S Y, Wang Z R, Li Y N, Joshi S, Midya R, Li C, Rao M Y, Barnell M, Wu Q, Yang J J and Xia Q F 2017 Nat. Commun. 8 882
[29] Zhang T, Yin M H, Xu C M, Lu X Y, Sun X H, Yang Y C and Huang R 2017 Nanotechnology 28 455202
[30] Woo K S, Wang Y M, Kim J, Kim Y, Kwon Y J, Yoon J H, Kim W and Hwang C S 2019 Adv. Electron Mater. 5 1800543
[31] Arumi D, Gomez-Pau A, Manich S, Rodriguez-Montanes R, Gonzalez M B and Campabadal F 2019 IEEE Electron Dev. Lett. 40 341
[32] Balatti S, Ambrogio S, Wang Z Q and Ielmini D 2015 IEEE J. Emerging Sel. Top. Circ. Systems 5 214
[33] Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H and Huang R 2017 Nat. Commun. 8 15173
[34] Yoon J H, Kim K M, Song S J, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X and Hwang C S 2015 Adv. Mater. 27 3811
[35] Kim K M, Kim G H, Song S J, Seok J Y, Lee M H, Yoon J H and Hwang C S 2010 Nanotechnology 21 305203
[36] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[37] Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S and Hwang C S 2011 Nanotechnology 22 254010
[38] Kao K C, Hwang W and Choi S I 1983 Physics Today 36 90
[39] Di V C, Pacchioni G and Selloni A 2009 J. Phys. Chem. C 113 20543
[40] Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z S, Hansen J O, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B and Besenbacher F 2008 Science 320 1755
[41] Mattioli G, Filippone F, Alippi P and Amore Bonapasta A 2008 Phys. Rev. B 78 241201
[42] Wu X M, Soss S R, Rymaszewski E J and Lu T M 1994 Mater. Chem. Phys. 38 297
[43] Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
[1] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[2] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[3] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[6] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[7] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[8] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[9] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[10] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[11] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[12] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[13] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[14] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[15] Attempt to generalize fractional-order electric elements to complex-order ones
Gangquan Si(司刚全), Lijie Diao(刁利杰), Jianwei Zhu(朱建伟), Yuhang Lei(雷妤航), Yanbin Zhang(张彦斌). Chin. Phys. B, 2017, 26(6): 060503.
No Suggested Reading articles found!