Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047103    DOI: 10.1088/1674-1056/ab75db
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ab initio calculations on oxygen vacancy defects in strained amorphous silica

Bao-Hua Zhou(周保花)1, Fu-Jie Zhang(张福杰)1, Xiao Liu(刘笑)1, Yu Song(宋宇)2,3, Xu Zuo(左旭)1,4
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China
Abstract  The effects of uniaxial tensile strain on the structural and electronic properties of positively charged oxygen vacancy defects in amorphous silica (a-SiO2) are systematically investigated using ab-initio calculation based on density functional theory. Four types of positively charged oxygen vacancy defects, namely the dimer, unpuckered, and puckered four-fold (4×), and puckered five-fold (5×) configurations have been investigated. It is shown by the calculations that applying uniaxial tensile strain can lead to irreversible transitions of defect structures, which can be identified from the fluctuations of the curves of relative total energy versus strain. Driven by strain, a positively charged dimer configuration may relax into a puckered 5×configuration, and an unpuckered configuration may relax into either a puckered 4×configuration or a forward-oriented configuration. Accordingly, the Fermi contacts of the defects remarkably increase and the defect levels shift under strain. The Fermi contacts of the puckered configurations also increase under strain to the values close to that of Eα' center in a-SiO2. In addition, it is shown by the calculations that the relaxation channels of the puckered configurations after electron recombination are sensitive to strain, that is, those configurations are more likely to relax into a two-fold coordinated Si structure or to hold a puckered structure under strain, both of which may raise up the thermodynamic charge-state transition levels of the defects into Si band gap. As strain induces more puckered configurations with the transition levels in Si band gap, it may facilitate directly the development of oxide charge accumulation and indirectly that of interface charge accumulation by promoting proton generation under ionization radiation. This work sheds a light on understanding the strain effect on ionization damage at an atomic scale.
Keywords:  amorphous silica      first-principles calculation      strain      oxygen vacancy defects  
Received:  22 January 2020      Revised:  09 February 2020      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105) and the CAEP Microsystem and THz Science and Technology Foundation (Grant No. CAT201501).
Corresponding Authors:  Bao-Hua Zhou, Xu Zuo     E-mail:  z_baohua@126.com;xzuo@nankai.edu.cn,xzuonku@qq.com

Cite this article: 

Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭) Ab initio calculations on oxygen vacancy defects in strained amorphous silica 2020 Chin. Phys. B 29 047103

[1] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P and Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833
[2] Johnston A H, Swimm R T and Miyahira T F 2010 IEEE Trans. Nucl. Sci. 57 3279
[3] Witczak S C, Lacoe R C, Osborn J V, Hutson J M and Moss S C 2005 IEEE Trans. Nucl. Sci. 52 2602
[4] Enlow E W, Pease R L, Combs W, Schrimpf R D and Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342
[5] Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G L, Fleetwood D M, Dodd P E, Reber C A, Witczak S C, Riewe L C, Hjalmarson H P, Banks J C, Doyle B L and Knapp J A 2002 IEEE Trans. Nucl. Sci. 49 3171
[6] Boch J, Fleetwood D M, Schrimpf R D, Cizmarik R R and Saigne F 2003 IEEE Trans. Nucl. Sci. 50 2335
[7] Shaneyfelt M R, Pease R L, Maher M C, Schwank J R, Gupta S, Dodd P E and Riewe L C 2003 IEEE Trans. Nucl. Sci. 50 1784
[8] Blöchl P E 2000 Phys. Rev. B 62 6158
[9] Yue Y, Song Y and Zuo X 2018 Chin. Phys. B 27 037102
[10] Uchino T and Yoko T 2006 Phys. Rev. B 74
[11] Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D and Pantelides S T 2002 Phys. Rev. Lett. 89 285505
[12] Yue Y, Li P, Song Y and Zuo X 2018 J. Non-Cryst. Solids 486 1
[13] Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2016 J. Mater. Chem. C 4 8104
[14] Plimpton S 1995 J. Comput. Phys. 117 1
[15] Fogarty J C, Aktulga H M, Grama A Y, van Duin A C and Pandit S A 2010 J. Chem. Phys. 132 174704
[16] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
[17] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Phys. Chem. 81 3684
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[21] Alkauskas A, Broqvist P, Devynck F and Pasquarello A 2008 Phys. Rev. Lett. 101 106802
[22] Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S and Richard N 2014 Phys. Rev. B 90
[23] Stirling A, Pasquarello A, Charlier J and Car R 2000 Phys. Rev. Lett. 85 2773
[24] Al-Shami A, Lakhal M, Hamedoun M, El Kenz A, Benyoussef A, Loulidi M, Ennaoui A and Mounkachi O 2018 Sol. Energy Mater. Sol. Cells 180 266
[25] Grote C and Berger R F 2015 J. Phys. Chem. C 119 22832
[26] Zhou W, Liu Y, Yang Y and Wu P 2014 J. Phys. Chem. C 118 6448
[27] El-Sayed A M, Watkins M B, Grasser T, Afanas'ev V V and Shluger A L 2015 Phys. Rev. Lett. 114 115503
[28] Le Roux S and Petkov V 2010 J. Appl. Crystallogr. 43 181
[29] Guttman L 1990 J. Non-Cryst. Solids 116 145
[30] Trachenko K and Dove M T 2003 Phys. Rev. B 67
[31] Rino J P, Ebbsjö I, Kalia R K, Nakano A and Vashishta P 1993 Phys. Rev. B 47 3053
[32] Mozzi R L and Warren B E 1969 J. Appl. Crystallogr. 2 164
[33] Grunthaner F J and Grunthaner P J 1986 Mater. Sci. Rep. 1 65
[34] Griscom D L 1977 J. Non-Cryst. Solids 24 155
[35] Dupree E and Pettifer R F 1984 Nature 308 523
[36] Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N 2008 Chem. Mater. 20 4356
[37] Kuo C L, Lee S and Hwang G S 2008 Phys. Rev. Lett. 100 076104
[38] Wei Q, Zhang Q, Yan H, Zhang M and Zhang J 2018 Mater. Res. Bull. 102 1
[39] Bahramy M S, Sluiter M H F and Kawazoe Y 2006 Phys. Rev. B 73
[40] Stesmans A, Jivanescu M and Afanas'ev V V 2011 Europhys. Lett. 93 16002
[41] Buscarino G, Agnello S and Gelardi F M 2006 Phys. Rev. Lett. 97 135502
[42] Uchino T, Takahashi M and Yoko T 2001 Phys. Rev. Lett. 86 1777
[43] Donadio D, Bernasconi M and Boero M 2001 Phys. Rev. Lett. 87 195504
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[13] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[14] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[15] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
No Suggested Reading articles found!