Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046101    DOI: 10.1088/1674-1056/ab75d5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning

Zhen Zhu(朱震)1, Baojuan Dong(董宝娟)2,4,5, Huaihong Guo(郭怀红)3, Teng Yang(杨腾)2, Zhidong Zhang(张志东)2
1 Materials Department, University of California, Santa Barbara, CA 93106, USA;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
3 College of Sciences, Liaoning Shihua University, Fushun 113001, China;
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Two-dimensional (2D) semiconductors isoelectronic to phosphorene have been drawing much attention recently due to their promising applications for next-generation (opt)electronics. This family of 2D materials contains more than 400 members, including (a) elemental group-V materials, (b) binary III-VII and IV-VI compounds, (c) ternary III-VI-VII and IV-V-VII compounds, making materials design with targeted functionality unprecedentedly rich and extremely challenging. To shed light on rational functionality design with this family of materials, we systemically explore their fundamental band gaps and alignments using hybrid density functional theory (DFT) in combination with machine learning. First, calculations are performed using both the Perdew-Burke-Ernzerhof exchange-correlation functional within the general-gradient-density approximation (GGA-PBE) and Heyd-Scuseria-Ernzerhof hybrid functional (HSE) as a reference. We find this family of materials share similar crystalline structures, but possess largely distributed band-gap values ranging approximately from 0 eV to 8 eV. Then, we apply machine learning methods, including linear regression (LR), random forest regression (RFR), and support vector machine regression (SVR), to build models for the prediction of electronic properties. Among these models, SVR is found to have the best performance, yielding the root mean square error (RMSE) less than 0.15 eV for the predicted band gaps, valence-band maximums (VBMs), and conduction-band minimums (CBMs) when both PBE results and elemental information are used as features. Thus, we demonstrate that the machine learning models are universally suitable for screening 2D isoelectronic systems with targeted functionality, and especially valuable for the design of alloys and heterogeneous systems.
Keywords:  two-dimensional semiconductors      machine learning  
Received:  31 December 2019      Revised:  31 January 2020      Published:  05 April 2020
PACS:  73.61.Cw (Elemental semiconductors)  
  61.46.-w (Structure of nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: This work is dedicated to Michelle Mucheng Zhu. Project supported by the National Key R&D Program of China (Grant No. 2017YFA0206301).
Corresponding Authors:  Zhen Zhu, Teng Yang     E-mail:  zhuzhen@engineering.ucsb.edu;yangteng@imr.ac.cn

Cite this article: 

Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东) Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning 2020 Chin. Phys. B 29 046101

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Mak K F and Shan J 2016 Nat. Photon. 10 216
[4] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti I V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Perera M M, Lin M W, Chuang H J, Chamlagain B P, Wang C, Tan X, Cheng M M C, Tománek D and Zhou Z 2013 ACS Nano 7 4449
[7] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[8] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[9] Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106
[10] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[11] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523
[12] Liu H, Du Y, Deng Y and Peide D Y 2015 Chem. Soc. Rev. 44 2732
[13] Curtarolo S, Hart G L, Nardelli M B, Mingo N, Sanvito S and Levy O 2013 Nat. Mater. 12 191
[14] De Jong M, Chen W, Angsten T, et al. 2015 Scientific Data 2 150009
[15] Setyawan W and Curtarolo S 2010 Computational Materials Science 49 299
[16] Hautier G, Jain A, Ong S P, Kang B, Moore C, Doe R and Ceder G 2011 Chemistry of Materials 23 3495
[17] https://icsd.fiz-karlsruhe.de
[18] Ward L and Wolverton C 2017 Current Opinion in Solid State and Materials Science 21 167
[19] Ward L, Agrawal A, Choudhary A and Wolverton C 2016 npj Computational Materials 2 16028
[20] Deml A M, O’Hayre R, Wolverton C and Stevanović V 2016 Phys. Rev. B 93 085142
[21] Pilania G, Gubernatis J E and Lookman T 2017 Computational Materials Science 129 156
[22] Lee J, Seko A, Shitara K, Nakayama K and Tanaka I 2016 Phys. Rev. B 93 115104
[23] Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A and Kim C 2017 npj Computational Materials 3 54
[24] Balachandran P V, Theiler J, Rondinelli J M and Lookman T 2015 Sci. Rep. 5 13285
[25] Ji J, Song X, Liu J, et al. 2016 Nat. Commun. 7 13352
[26] Zhang J L, Zhao S, Han C, et al. 2016 Nano Lett. 16 4903
[27] Haleoot R, Paillard C, Mehboudi M, Xu B, Bellaiche L and BarrazaLopez S 2017 Phys. Rev. Lett. 118 227401
[28] Fei R, Kang W and Yang L 2016 Phys. Rev. Lett. 117 097601
[29] Blöchl P 1994 Phys. Rev. B 50 17953
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[33] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[34] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 124 219906
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] https://http://scikit-learn.org/
[37] Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
[38] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angewandte Chemie 127 3155
[39] Guan J, Zhu Z and Tománek D 2014 ACS Nano 8 12763
[40] Zhu Z, Guan J, Liu D and Tománek D 2015 ACS Nano 9 8284
[41] Wang J, Dong B J, Guo H, Yang T, Zhu Z, Hu G, Saito R and Zhang Z D 2017 Phys. Rev. B 95 045404
[42] Zhang Y, Guo H, Dong B J, Zhu Z, Yang T, Wang J and Zhang Z 2020 Chin. Phys. B 29 037305
[43] Goodman C 1958 J. Phys. Chem. Solids 6 305
[44] Matthews B E, Holder A M, Schelhas L, et al. 2017 J. Mater. Chem. A 5 16873
[1] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[2] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
[3] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[4] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[5] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
[6] Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique
Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(4): 047501.
[7] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[8] Accomplishment and challenge of materials database toward big data
Yibin Xu(徐一斌). Chin. Phys. B, 2018, 27(11): 118901.
[9] Exploring the relationship between fractal features and bacterial essential genes
Yong-Ming Yu(余永明), Li-Cai Yang(杨立才), Qian Zhou(周茜), Lu-Lu Zhao(赵璐璐), Zhi-Ping Liu(刘治平). Chin. Phys. B, 2016, 25(6): 060503.
[10] TERAHERTZ SPECTRA EMITTED FROM HOT CARRIERS IN TWO-DIMENSIONAL SEMICONDUCTORS
Lei Xiao-lin, Liu Shi-yong. Chin. Phys. B, 2001, 10(9): 840-843.
No Suggested Reading articles found!