Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 043204    DOI: 10.1088/1674-1056/ab75d3
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer

Yan Lu(卢妍)1, Yueyang Zhai(翟跃阳)2,3,4, Yong Zhang(张勇)1, Wenfeng Fan(范文峰)1, Li Xing(邢力)1, Wei Quan(全伟)2,3,4
1 School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
2 Research Institute of Frontier Science, Beihang University, Beijing 100191, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100191, China;
4 Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
Abstract  The total effective spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne comagnetometer is analyzed, and the results show that the coexistence of 87Rb and 85Rb isotopes in the same volume can lead to a large extra spin-exchange broadening compared to pure 87Rb. This broadening mainly comes from the contribution of the equivalent reduction in the Rb spin-exchange rate. On this basis, an approximate relaxation model is proposed and experimentally demonstrated to be more accurate than that from a previous work. This study also provides a method for determining the properties of alkali-metal vapor cells.
Keywords:  comagnetometer      naturally abundant Rb      spin-exchange relaxation      spin polarization  
Received:  24 December 2019      Revised:  28 January 2020      Published:  05 April 2020
PACS:  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  32.10.Fn (Fine and hyperfine structure)  
  32.80.Xx (Level crossing and optical pumping)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0501600 and 2017YFB0503100), the National Natural Science Foundation of China (Grant Nos. 61773043, 61673041, 61721091, and 61703025), and the National Science Fund for Distinguished Young Scholars of China (Grant No. 61925301).
Corresponding Authors:  Wei Quan     E-mail:  quanwei@buaa.edu.cn

Cite this article: 

Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟) Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer 2020 Chin. Phys. B 29 043204

[1] Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 253002
[2] Smiciklas M, Brown J M, Cheuk L W, Smullin S J and Romalis M V 2011 Phys. Rev. Lett. 107 171604
[3] Allmendinger F, Heil W, Karpuk S, Kilian W, Scharth A, Schmidt U, Schnabel A, Sobolev Yu and Tullney K 2014 Phys. Rev. Lett. 112 110801
[4] Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H and Walker T G 2013 Phys. Rev. Lett. 111 102001
[5] Terrano W A, Adelberger E G, Lee J G and Heckel B R 2015 Phys. Rev. Lett. 115 201801
[6] Ji W, Chen Y, Fu C, Ding M, Fang J, Xiao Z, Wei K and Yan H 2018 Phys. Rev. Lett. 121 261803
[7] Kornack T W, Ghosh R K and Romalis M V 2005 Phys. Rev. Lett. 95 230801
[8] Chen Y, Quan W, Zou S, Lu Y, Duan L, Li Y, Zhang H, Ding M and Fang J 2016 Sci. Rep. 6 36547
[9] Jiang L, Quan W, Li R, Duan L, Fan W, Wang Z, Liu F, Xing L and Fang J 2017 Phys. Rev. A 95 062103
[10] Limes M E, Sheng D and Romalis M V 2018 Phys. Rev. Lett. 120 033401
[11] Savukov I M and Romalis M V 2005 Phys. Rev. A 71 023405
[12] Chen Y, Quan W, Duan L, Lu Y, Jiang L and Fang J 2016 Phys. Rev. A 94 052705
[13] Li R, Quan W, Fan W, Xing L and Fang J 2017 Sens. Actuat A-Phys. 266 130
[14] Jiang L, Quan W, Li R, Fan W, Liu F, Qin J, Wan S and Fang J 2018 Appl. Phys. Lett. 112 054103
[15] Fan W, Quan W, Zhang W, Xing L and Liu G 2019 IEEE Access 7 28574
[16] Kimball D F J, Lacey I, Valdez J, Swiatlowski J, Rios C, Peregrina-Ramirez R, Montcrieffe C, Kremer J, Dudley J and Sanchez C 2013 Ann. Phys. (Berlin) 525 514
[17] Dmitriev S P, Dovator N A, Kartoshkin V A and Klementiev G V 2018 J. Phys.: Conf. Ser. 1135 012052
[18] Romalis M V 2010 Phys. Rev. Lett. 105 243001
[19] Brown J M 2011 A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer (PhD dissertation) (Princeton: Princeton university)
[20] Ghosh R K and Romalis M V 2010 Phys. Rev. A 81 043415
[21] Quan W, Wei K, Zhao T, Li H and Zhai Y 2019 Phys. Rev. A 100 012118
[22] Seltzer S J 2008 Developments in alkali-metal atomic magnetometry (PhD dissertation) (Princeton: Princeton university)
[23] Duan L, Fang J, Li R, Jiang L, Ding M and Wang W 2015 Opt. Express 23 32481
[24] Bloch F 1946 Phys. Rev. 70 460
[25] Chi H, Quan W, Zhang J, Zhao L and Fang J 2020 Appl. Surf. Sci. 501 143897
[26] Jarrett S M 1964 Phys. Rev. 133 A111
[27] Vasilakis G 2011 Precision measurements of spin interactions with high density atomic vapors (PhD dissertation) (Princeton: Princeton university)
[28] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[29] Happer W and Tam A C 1977 Phys. Rev. A 16 1877
[30] Ressler N W, Sands R H and Stark T E 1969 Phys. Rev. 184 102
[31] Gibbs H M and Hull R J 1967 Phys. Rev. 153 132
[32] Lu J, Qian Z and Fang J 2015 Rev. Sci. Instrum. 86 043104
[33] Jiang L, Quan W, Liu F, Fan W, Xing L, Duan L, Liu W and Fang J 2019 Phys. Rev. Appl. 12 024017
[34] Fang J, Chen Y, Zou S, Liu X, Hu Z, Quan W, Yuan H and Ding M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065006
[35] Brown J M, Smullin S J, Kornack T W and Romalis M V 2010 Phys. Rev. Lett. 105 151604
[36] Kornack T W, Smullin S J, Lee S K and Romalis M V 2007 Appl. Phys. Lett. 90 223501
[37] Xing L, Quan W, Fan W, Zhang W, Fu Y and Song T 2019 IEEE Access 7 63892
[1] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[2] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[3] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[4] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[5] Spin polarization and dispersion effects in emergence of roaming transition state for nitrobenzene isomerization
Zhi-Yuan Zhang(张志远), Wan-Run Jiang(姜万润), Bo Wang(王波), Yan-Qiang Yang(杨延强), Zhi-Gang Wang(王志刚). Chin. Phys. B, 2018, 27(1): 013102.
[6] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[7] Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2016, 25(2): 027201.
[8] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[9] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
[10] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng, Wang Tao, Zhang Hong, Li Yang, Cai Hong-Wei. Chin. Phys. B, 2015, 24(6): 060702.
[11] Current-induced pseudospin polarization in silicene
Wang Lei, Zhu Guo-Bao. Chin. Phys. B, 2014, 23(9): 098503.
[12] Properties of pseudospin polarization on a graphene-based spin singlet superconducting junction
Jia Shuan-Wen, Wang Jun-Tao, Yang Yan-Ling, Bai Chun-Xu. Chin. Phys. B, 2013, 22(8): 087408.
[13] Confined states and spin polarization on a topological insulator thin film modulated by an electric potential
Liu Yi-Man, Shao Huai-Hua, Zhou Xiao-Ying, Zhou Guang-Hui. Chin. Phys. B, 2013, 22(7): 077310.
[14] Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device
Hong Xue-Kun, Yang Xi-Feng, Feng Jin-Fu, Liu Yu-Shen. Chin. Phys. B, 2013, 22(5): 057306.
[15] Numerical simulation study about spin resonant depolarization due to spin–orbit coupling
Lan Jie-Qin, Xu Hong-Liang. Chin. Phys. B, 2012, 21(8): 084501.
No Suggested Reading articles found!