Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047801    DOI: 10.1088/1674-1056/ab75cd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives

Ji Zhou(周吉)1, Shi-Kui Dong(董士奎)2, Zhi-Hong He(贺志宏)2, Yan-Hu Zhang(张彦虎)3
1 Beijing Institute of Space Mechanics&Electricity, Beijing 100094, China;
2 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3 Advanced Manufacturing&Equipment Institute, Jiangsu University, Zhenjiang 212013, China
Abstract  Ionic liquids have received wide attention due to their novel optoelectronic structures and devices as an optical means of regulating electricity. However, the quantitative testing and analysis of refractive index of ionic liquids under electric field are rarely carried out. In the present study, an experimental apparatus including a hollow prism is designed to measure the refractive indices of ionic liquids under different electric fields. Five groups of imidazole ionic liquids are experimentally investigated and an inversion is performed to determine the refractive indices under electric fields. The error propagation analysis of the apex angle and the minimum deflection angle are conducted, and the machining accuracy requirements of the hollow prism are determined. The results show that the refractive indices of imidazole ionic liquids change with the light wavelength, following a downward convex parabola. Furthermore, the refractive index decreases with the carbon chain length of ionic liquid at a given wavelength, presenting an order of C3MImI > C4MImI > C5MImI > C3MImBr > C3MImBF4. Notably, the refractive index of imidazole ionic liquid exhibits a nonlinear change with the applied voltage at 546 nm and a monotonical decrease at 1529 nm. Besides, the variation of refractive index at 1529 nm with the applied voltage is larger than that at 546 nm and 1013 nm. Importantly, the variation of refractive index is contrary to that of absorption coefficient under electric field. This study illustrates that the theory of electrode and carrier transport can be used to explain the law of variation of n-k value of ionic liquid under the electric field, and provides the support for the evaluation of physical properties of ionic liquids, the measurement of optical functional parameters and the regulation of electric-optic performances of optical devices.
Keywords:  ionic liquid      refractive index      electro-optical property      uncertainty propagation analysis  
Received:  10 November 2019      Revised:  08 February 2020      Published:  05 April 2020
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.30.cd (Solutions and ionic liquids)  
  78.20.Jq (Electro-optical effects)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51576054 and 51705210) and the Jiangsu Provincial Planned Projects for Postdoctoral Research Funds, China (Grant No. 2019K195).
Corresponding Authors:  Yan-Hu Zhang     E-mail:  zhyh@ujs.edu.cn

Cite this article: 

Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎) Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives 2020 Chin. Phys. B 29 047801

[1] Nair J R, Coló F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi G B, Passerini S and Gerbaldi C 2019 J. Power Sources 412 398
[2] Hagiwara R and Ito Y 2000 J. Fluor. Chem. 105 221
[3] Marsh K N, Boxall J A and Lichtenthaler R 2004 Fluid Phase Equilib. 219 93
[4] Leighton C 2019 Nat. Mater. 18 13
[5] Fan F R, Wu H, Nabok D, Hu S, Ren W, Draxl C and Stroppa A 2017 J. Am. Chem. Soc. 139 12883
[6] Zhang C, Zhao W, Bi S, Rouleau C M, Fowlkes J D, Boldman W L, Gu G, Li Q, Feng G and Rack P D 2019 ACS Appl. Mater. Interfaces 11 17979
[7] Dedzo G K and Detellier C 2018 Adv. Funct. Mater. 28 1703845
[8] Lee K, Kim Y, Jung J, Ihee H and Park Y 2018 Sci. Rep. 8 3064
[9] Xu F, Das S, Gong Y, Liu Q, Chien H C, Chiu H Y, Wu J and Hui R 2015 Appl. Phys. Lett. 106 031109
[10] Wang F, Itkis M E, Bekyarova E and Haddon R C 2013 Nat. Photon. 7 459
[11] Zhou J, Dong S K, He Z H, Caesar Puoza J L and Zhang Y H 2019 Chin. Phys. B 28 017801
[12] Hayyan A, Mjalli F S, AlNashef I M, Al-Wahaibi Y M, Al-Wahaibi T and Hashim M A 2013 J. Mol. Liq. 178 137
[13] Rilo E, Domínguez-Pérez M, Vila J, Segade L, García M, Varela L M and Cabeza O 2012 J. Chem. Thermodyn. 47 219
[14] Wang X, Lu X, Zhou Q, Zhao Y, Li X and Zhang S 2017 Phys. Chem. Chem. Phys. 19 19967
[15] Kang X, Zhao Y and Li J 2018 J. Mol. Liq. 250 44
[16] Soriano A N, Ornedo-Ramos K F P, Muriel C A M, Adornado A P, Bungay V C and Li M H 2016 J. Taiwan Inst. Chem. Eng. 65 83
[17] Chaudhary N and Nain A K 2018 J. Mol. Liq. 271 501
[18] Zhang Q, Cai S, Zhang W, Lan Y and Zhang X 2017 J. Mol. Liq. 233 471
[19] de Pablo L, Segovia Puras J J, Martín C and Bermejo M D 2018 J. Chem. Eng. Data 63 1053
[20] Bhattacharjee A, Lopes-da-Silva J A, Freire M G, Coutinho J A P and Carvalho P J 2015 Fluid Phase Equilib. 400 103
[21] Bhattacharjee A, Luís A, Santos J H, Lopes-da-Silva J A, Freire M G, Carvalho P J and Coutinho J A P 2014 Fluid Phase Equilib. 381 36
[22] Seki S, Serizawa N, Ono S, Takei K, Hayamizu K, Tsuzuki S and Umebayashi Y 2019 J. Chem. Eng. Data 64 433
[23] Zheng X, Gong Y, Jiang W, Yu K, Tong J and Yang J 2019 J. Mol. Liq. 288 111004
[24] Shi R and Wang Y 2013 J. Phys. Chem. B 117 5102
[25] Bai L, Li S N, Zhai Q G, Jiang Y C and Hu M C 2015 Chem. Pap. 69 1378
[26] Montalbán M G, Bolívar C L, Díaz Baños F G and Víllora G 2015 J. Chem. Eng. Data 60 1986
[27] Lide D R 1992 Appl. Phys. B-Lasers Opt. 54 113
[28] Paskov P P and Pavlov L I J A P B 1992 Appl. Phys. B-Lasers Opt. 54 113
[29] Stagg B J and Charalampopoulos T T 1993 Combust. Flame 94 381
[30] Peiponen K E and Vartiainen E M Phys. Rev. B 44 8301
[31] Burba C M, Janzen J, Butson E D and Coltrain G L 2013 J. Phys. Chem. B 117 8814
[32] Chiappe C, Margari P, Mezzetta A, Pomelli C S, Koutsoumpos S, Papamichael M, Giannios P and Moutzouris K 2017 Phys. Chem. Chem. Phys. 19 8201
[1] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[2] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[3] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[4] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[5] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[6] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[7] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[8] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[9] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
[10] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[11] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
[12] High-performance lens antenna using high refractive index metamaterials
Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜). Chin. Phys. B, 2018, 27(8): 087802.
[13] Multilayer graphene refractive index tuning by optical power
Lijun Li(李丽君), Yilin Liu(刘仪琳), Yinming Liu(刘荫明), Lin Xu(徐琳), Fei Yu(于飞), Tianzong Xu(徐天纵), Zhihui Shi(石志辉), Weikang Jia(贾伟康). Chin. Phys. B, 2018, 27(12): 126304.
[14] Cascaded tilted fiber Bragg grating for enhanced refractive index sensing
Biqiang Jiang(姜碧强), Zhixuan Bi(毕芷瑄), Shouheng Wang(王守恒), Teli Xi(席特立), Kaiming Zhou, Lin Zhang, Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114220.
[15] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
No Suggested Reading articles found!