Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038104    DOI: 10.1088/1674-1056/ab74ce
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors

Liu-Hong Ma(马刘红)1,3, Wei-Hua Han(韩伟华)2,3, Fu-Hua Yang(杨富华)3,4
1 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.
Keywords:  junctionless nanowire transistor      quantum transport      hopping transport      quantum dot     
Received:  06 November 2019      Published:  05 March 2020
PACS:  81.07.Gf (Nanowires)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0200503) and the National Natural Science Foundation of China (Grant Nos. 11947115, 61376096, 61327813, and 61404126).
Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华) Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors 2020 Chin. Phys. B 29 038104

[1] Cao Q, Tersoff J, Farmer D B, Zhu Y and Han S J 2017 Science 356 1369
[2] Sun S X, Ma L H, Cheng C, Zhang C, Zhong Y H, Li Y X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700322
[3] Sun S X, Chang M M, Li M K, Ma L H, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2019 Chin. Phys. B 28 078501
[4] Li Y, Yu S M, Hwang J R and Yang F L 2008 IEEE Trans. Electron Devices 55 1449
[5] Shine G and Saraswat K C 2017 IEEE Trans. Electron Devices 64 3768
[6] Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid State Electron. 70 92
[7] Moraru D, Samanta A, Tyszka K, Muruganathan M, Mizuno T, Jablonski R, Mizuta H and Tabe M 2015 Nanoscale Res. Lett. 10 372
[8] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotechnol. 7 242
[9] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2009 Nat. Nanotechnol. 5 133
[10] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[11] Uddin W, Georgiev Y M, Maity S and Das S 2017 J. Phys. D: Appl. Phys. 50 365104
[12] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[13] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[14] Moraru D, Ligowski M, Yokoi K, Mizuno T and Tabe M 2013 Appl. Phys. Express 2 071201
[15] Ma L H, Han W H, Zhao X S, Guo Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 088106
[16] Lee C W, Borne A, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 IEEE Trans. Electron Devices 57 620
[17] Ghibaudo G 1988 Electron. Lett. 24 543
[18] Ma L H, Han W H, Wang H, Yang X and Yang F H 2015 Chin. Phys. B 24 128101
[19] Jeon D Y, Park S, Mouis M, Berthome M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 90 86
[20] Duarte J P, Kim M S, Choi S J and Choi Y K 2012 IEEE Trans. Electron Devices 59 1008
[21] Waugh F R, Berry M J, Mar D J, Westervelt R M, Campman K L and Gossard A C 1995 Phys. Rev. Lett. 75 705
[22] Tan K Y, Chan K W, M, Morello A, Yang C, Donkelaar J V, Alves A, Pirkkalainen J M, Jamieson D N, Clark R G and Dzurak A S 2010 Nano Lett. 10 11
[23] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[24] Morgan N Y, Abusch-Magder D, Kastner M A, Takahashi Y, Tamura H and Murase K 2001 J. Appl. Phys. 89 410
[25] Romero H E and Drndic M 2005 Phys. Rev. Lett. 95 156801
[26] Altermatt P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[27] Wang H, Han W H, Ma L H, Li X M, Hong W T and Yang F H 2014 Appl. Phys. Lett. 104 133509
[28] Diarra M, Niquet Y M, Delerue C and Allan G 2007 Phys. Rev. B 75 045301
[29] Björk M T, Schmid H, Knoch J, Riel H and Riess W 2009 Nat. Nanotechnol. 4 103
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[5] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[6] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[7] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[8] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[9] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[10] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[11] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[12] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[13] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[14] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[15] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
No Suggested Reading articles found!