Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047101    DOI: 10.1088/1674-1056/ab7223
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound

Wahiba Metiri1, Khaled Cheikh2
1 Département de Physique, Faculté des Sciences, Université 20 aoȗt 1955-Skikda BP 26, Route El-Hadaiek, 21000 Skikda, Algeria;
2 Département de Technologie, Faculté de Technologie, Université 20 aoȗt 1955-Skikda BP 26, Route El-Hadaiek, 21000 Skikda, Algeria
Abstract  Structural, elastic, electronic and optical properties of the Pt3Zr intermetallic compound are investigated using first principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA) and the local density approximation (LDA). The Pt3Zr compound is predicted to be of cubic L12 and hexagonal D024 structures. The calculated equilibrium ground-state properties (lattice parameters a and c, bulk modulus B and its pressure derivative B', formation enthalpy ΔH) of the Pt3Zr compound, for both cubic and hexagonal phases, show good agreement with the experimental results and other theoretical data. Elastic constants (C11, C12, C13, C33, C44, and C55) are calculated. The predicted elastic properties such as Young's modulus E and shear modulus GH, Poisson ratio ν, anisotropic ratio A, Kleinman parameter ξ, Cauchy pressure (C12-C44), ratios B/C44 and B/G, and Vickers hardness Hv indicate the stiffness, hardness and ductility of the compound. Thermal characteristic parameters such as Debye temperature θD and melting temperature Tm are computed. Electronic properties such as density of states (DOS) and electronic specific heat γ are also reported. The calculated results reveal that the Fermi level is on the psedogap for the D024 structure and on the antibonding side for the L12 structure. The optical property functions (real part ε1(ω) and imaginary part ε2(ω) of dielectric function), optical conductivity σ (ω), refraction index n(ω), reflectivity R(ω), absorption α (ω) and extinction coefficients k(ω) and loss function L(ω)) are also investigated for the first time for Pt3Zr in a large gamme of energy from 0 to 70 eV.
Keywords:  density functional theory      intermetallic      density of states      L12      D024      optical properties  
Received:  11 November 2019      Revised:  28 January 2020      Published:  05 April 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Lp (Intermetallic compounds)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Corresponding Authors:  Wahiba Metiri, Khaled Cheikh     E-mail:  wahiba_metiri@yahoo.fr;cheikh.khaled@yahoo.fr

Cite this article: 

Wahiba Metiri, Khaled Cheikh Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound 2020 Chin. Phys. B 29 047101

[1] Chen X Q, Fu C L and Morris J R 2010 Intermetallics 18 998
[2] Pan Y, Guan W M and Zhang K H 2013 Physica B 427 17
[3] Sheng L Y, Zhang W, Guo J T, Wang Z S, Ovcharenko V E, Zhou L Z and Ye H Q 2009 Intermetallics 17 572
[4] Liu C T, Stringer J, Mundy J N, Horton L L and Angelini P 1997 Intermetallics 5 579
[5] Fairbank G B, Humphreys C J, Kelly A and Jones C N 2000 Intermetallics 8 1091
[6] Miura S, Honma K, Terada Y, Sanchez J M and Mohri T 2000 Intermetallics 8 785
[7] Gao Y, Guo C, Li C and Du Z 2010 Int. J. Mater. Res. 101 819
[8] Yamabe Mitarai Y, Ro Y and Murakami H 1998 Metall. Mater. Trans. A. 29 537
[9] Yamabe Mitarai Y, Ro Y, Maruko T and Murakami H 1998 Scr. Mater. 40 109
[10] Yamabe Mitarai Y, Ro Y, Maruko T and Murakami H 1999 Intermetallics 7 49
[11] Yamabe Mitarai Y, Nakazawa S and Harada H 2000 Scr. Mater. 43 1059
[12] Yamabe Mitarai Y and Aoki H J 2003 Alloys Compd. 359 143
[13] Luo J, Li M, Li H and Yu W 2009 Mater. Sci. Eng. A. 505 88
[14] Odusote J K, Cornish L A and Chown L H 2012 Corros. Sci. 63 119
[15] Alam M Z, Kamat S V, Jayaram V and Das D K 2013 Acta Mater. 61 1093
[16] Liebscher C H and Glatzel U 2014 Intermetallics 48 71
[17] Hill P J, Mitarai Y Y and Wolff I M 2001 Scr. Mater. 44 43
[18] Jiang C, Sordelet D J and Gleeson B 2005 Phys. Rev. B 72 184203
[19] Yamabe Y, Koizumi Y, Murakami H, Maruko Y R T and Harada H 1996 Scr. Mater. 35 211
[20] Srikrishnan V and Ficalora P 1974 Metall. Mater. Trans. 5 1471
[21] Brewer L 1967 Acta Metall. 15 553
[22] Hum-Rothery W 1968 Prog. Mater. Sci. 13 229
[23] Pan Y, Guan W, Wen M, Zhang J, Wang C and Tan Z 2014 J. Alloys Compd. 585 549
[24] Yong P, Lin Y, Wang X, Chen S, Wang L, Tong C and Cao Z 2015 J. Alloys Compd. 643 49
[25] Bai X, Li J H, Dai Y and Liu B X 2013 Trans. Nonferrous Met. Soc. Chin. 23 3704
[26] Pan Y, Wang S, Jia L and Zhang X 2017 RSC Adv. 7 54772
[27] Pan Y, Lin Y H, Wang H, Guo J M, Singh A and Fu C Y 2016 Comput. Mater. Sci. 111 74
[28] Li H, Choi J J, Schmölzer W M, Weilach C, Rameshan C, Mittendorfer F et al 2015 J. Phys. Chem. C 119 2462
[29] Antlanger M, Schmolzer W M, Pavelec J, Mittendorfer F, Redinger J, Varga P et al Diebold U 2012 Phys. Rev. B. 86 035451
[30] Lu Y, Lu W G and Wang L 2017 Chin. Phys. Lett. 34 017102
[31] Li X Y, Huang C, Zhu Y, Li J B, Fan J Y, Pan Y F, Shi D N and Ma C L 2018 Acta Phys. Sin. 67 137101 (in Chinese)
[32] Blaha P, Schwarz K G Madsen K H, Kvasnicka D and Luitz J 2001 (Universitat Wien Austria: WIEN2K, Karlheinz Schwarz Techn.)
[33] Hohenberg P and Kohn W 1964 Phys. Rev. 136 86
[34] Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Perdew J P and Zunger A 1924 Phys. Rev. B 23 048
[36] Stalick J K and Waterstrat R M 2007 J. Alloys Compd. 430 123
[37] Stample C, Mannstadt W, Asahi R and Freeman A J 2001 Phys. Rev. B 63 155106
[38] Johannesson G H, Bligaard T, Ruban A V, Skriver H L, Jacobsen K W and Norskov J K 2002 Phys. Rev. Lett. 88 255506
[39] Popoola A I, Chown L H and Cornish L A 2014 Turkish J. Phys. 38 10
[40] Born M and Huang K 1998 Dynamical Theory of Crystal Lattices (New York: Oxford University Press)
[41] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (New York: Oxford University Press)
[42] Jamal M 2012 Hex-elastic
[43] Hill R 1952 Proc. Phys. Soc. London. A 65 349
[44] Voigt W 1928 Lehrbuch der Kristallphysik (Teubner: Leipzig)
[45] Reuss A and Angew Z 1929 Math. Mech. 9 49
[46] Mayer B, Anton H, Bott E, Methfessel M, Sticht J and Schmidt P C 2003 Intermetallics 11 23
[47] Chen Y M, Cheng W, Liao B and Zhang X 2013 Int. J. Mod. Phys. B 27 1350095
[48] Sun Z, Music D, Ahuja R and Schneider J M 2005 Phys. Rev. B 71 193402
[49] Vitos L, Korzhavyi P A and Johansson B 2003 Nat. Mater. 2 25
[50] Lincoln R C, Koliwad K M and Ghate P B 1967 Phys. Rev. 157 463
[51] Puttlitz K J, Stalter K A 2004 Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (New York: Marcel Dekker)
[52] Sundareswari M, Ramasubramanian S and Rajagopalan M 2010 State Commun. 150 2057
[53] Mio N, Zhou B J and Sun Z 2011 Comput. Mater. Sci. 50 1559
[54] Ren B, Lu D, Zhou R, Ji D, Hu M and Feng J 2018 Chin. Phys. B 27 107102
[55] Longke B, Deyi Q, Zhuangzhuang K and Yonghua D 2019 Solid State Sci. 98 106027
[56] Harrison W A 1989 Electronic Structure and Properties of Solids (New York: Dover)
[57] Deyi Q, Longke B, Zhuangzhuang K and Yonghua D 2019 Mater. Res. Express 6 116569
[58] Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater 33 93
[59] Zhuangzhuang K, Mingjun P, Yong S, Deyi Q and Longke B 2019 Phys. B: Condens. Matter 571 222
[60] Anderson O L 1963 J. Phys. Chem. Solids. 24 909
[61] Huang Z, Zhao Y, Hou H and Han P 2012 J. Phys. B 407 1075
[62] Wachter P, Filzmoser M, Rebizant 2001 Phys. B. 293 199
[63] Popoola A I 2013 PhD Dissertation (Johannesburg: University of Witwatersrand)
[64] Wooten F 1972 Optical Properties of Solids (New York: Academic Press)
[65] Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L and Yang X D 2010 Chin. Phys. B 19 077102
[66] Yao G, Chen Y, An X Y, Jiang Z Q, Cao L H, Wu W D and Zhao Y 2013 Chin. Phys. Lett. 30 067101
[67] Saad Ta, Mubarak A A, Saher S, Jamil M I and Gilani S M 2019 Chin. Phys. B 28 066101
[68] Ahuja R, Eriksson O, Johansson B, Auluck S and Wills J M 1996 Phys. Rev. B. 54 10419
[69] Sun J, Wang H T, He J L and Tian Y J 2005 Phys. Rev. B. 71 125132
[70] Okoye C M I 2003 J. Phys.: Condens. Matter. 15 5945
[71] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[8] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[9] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[10] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[11] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[12] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[13] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[14] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[15] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
No Suggested Reading articles found!