Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030306    DOI: 10.1088/1674-1056/ab6dc9
GENERAL Prev   Next  

Optical complex integration-transform for deriving complex fractional squeezing operator

Ke Zhang(张科)1,2,3, Cheng-Yu Fan(范承玉)1, Hong-Yi Fan(范洪义)2
1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230031, China;
3 Huainan Normal University, Huainan 232038, China
Abstract  We find a new complex integration-transform which can establish a new relationship between a two-mode operator's matrix element in the entangled state representation and its Wigner function. This integration keeps modulus invariant and therefore invertible. Based on this and the Weyl-Wigner correspondence theory, we find a two-mode operator which is responsible for complex fractional squeezing transformation. The entangled state representation and the Weyl ordering form of the two-mode Wigner operator are fully used in our derivation which brings convenience.
Keywords:  integration-transform      two-mode      entangled state      Weyl-Wigner correspondence theory  
Received:  12 November 2019      Revised:  17 January 2020      Published:  05 March 2020
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775208) and Key Projects of Huainan Normal University, China (Grant No. 2019XJZD04).
Corresponding Authors:  Cheng-Yu Fan     E-mail:

Cite this article: 

Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义) Optical complex integration-transform for deriving complex fractional squeezing operator 2020 Chin. Phys. B 29 030306

[1] Pellat-Finet P 1994 Opt. Lett. 19 1388
[2] Fan H Y and Lu H L 2007 Opt. Lett. 32 554
[3] Weyl H 1927 Z. Phys. 46 1
[4] Wigner E 1932 Phys. Rev. 40 749
[5] Zhang K, Fan C Y and Fan H Y 2019 Int J Theor. Phys. 58 1687
[6] Fan H Y and Fan Y 1996 Phys. Rev. A. 54 958
[7] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[8] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[9] Fan H Y and Lu H L 2006 Ann. of Phys. 321 480
[10] Fan H Y 1999 J. Phys. A. 25 3443
[11] Lv C H, Fan H Y and Jiang N Q 2010 Chin. Phys. B 19 120303
[12] Lv C H, Fan H Y and Li D W 2015 Chin. Phys. B 24 020301
[1] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[2] Evolution of quantum states via Weyl expansion in dissipative channel
Li-Yun Hu(胡利云), Zhi-Ming Rao(饶志明), Qing-Qiang Kuang(况庆强). Chin. Phys. B, 2019, 28(8): 084206.
[3] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[4] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[5] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[6] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[7] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[8] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[9] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[10] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[11] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[12] Hybrid entanglement concentration assisted with single coherent state
Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(3): 030302.
[13] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
[14] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[15] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu, Qian Shang-Wu. Chin. Phys. B, 2015, 24(4): 040301.
No Suggested Reading articles found!