Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048501    DOI: 10.1088/1674-1056/ab6d53
Special Issue: SPECIAL TOPIC — Ion beam technology
SPECIAL TOPIC—Ion beam technology Prev   Next  

Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes

Ruijing Zhang(张瑞菁)1, Xiaoli Liu(刘晓丽)1, Xinggang Hou(侯兴刚)1, Bin Liao(廖斌)2
1 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China;
2 Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  Nitrogen-doped TiO2 nanotubes (TNTs) were prepared by ion implantation and anodic oxidation. The prepared samples were applied in photocatalytic (PC) oxidation of methyl blue, rhodamine B, and bisphenol A under light irradiation. To explore the influence of doped ions on the band and electronic structure of TiO2, computer simulations were performed using the VASP code implementing spin-polarized density functional theory (DFT). Both substitutional and interstitial nitrogen atoms were considered. The experimental and computational results propose that the electronic structure of TiO2 was modified because of the emergence of impurity states in the band gap by introducing nitrogen into the lattice, leading to the absorption of visible light. The synergy effects of tubular structures and doped nitrogen ions were responsible for highly efficient and stable PC activities induced by visible and ultraviolet (UV) light.
Keywords:  photocatalytic activities      nitrogen ion implantation      TiO2 nanotube      impurity energy level      light irradiation  
Received:  02 January 2020      Revised:  13 January 2020      Published:  05 April 2020
PACS:  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  81.07.De (Nanotubes)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation for Joint Fund Key Project of China (Grant No. U1865206), the National Science and Technology Major Project of China (Grant No. 2017-VII-0012-0107), the National Defense Science and Technology Key Laboratory Fund of China (Grant No. 614220207011802), and the Key Area Research and Development Program of Guangdong Province, China (Grant No. 2019B090909002).
Corresponding Authors:  Xinggang Hou, Bin Liao     E-mail:;

Cite this article: 

Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌) Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes 2020 Chin. Phys. B 29 048501

[1] Resolution A/R E S/64/292 The human right to water, sanitation, United Nations General Assembly, 2010
[2] Keane D A, McGuigan K G, Ibáñez P F, Polo-López M I, Byrne A J, Dunlop P S M, O'Shea K, Dionysiou D D and Pillai S 2014 Catal. Sci. Technol. 4 1211
[3] Fang W, Xing M and Zhang J 2017 J. Photoch. Photobio. C 32 21
[4] Reddy P V L, Kim K H, Kavitha B, Kumar V, Raza N and Kalagara S 2018 J. Environ. Manage. 213 189
[5] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H and Dionysiou D D 2012 Appl. Catal. B-Environ. 125 331
[6] Froschl T, Hormann U, Kubiak P, Kučerova G, Pfanzelt M, Weiss C K, Behm R J, Hüsing N, Kaiser U, Landfester K and Wohlfahrt-Mehrens M 2012 Chem. Soc. Rev. 41 5313
[7] Fujishima A, Zhang X T and Tryk D A 2008 Surf. Sci. Rep. 63 515
[8] Bakar S A and Ribeiro C 2016 J. Photoch. Photobio. C 27 1
[9] Ge M Z, Cao C Y, Huang J Y, Li S H, Zhang S N, Deng S, Li Q S, Zhang K Q and Lai Y K 2007 Nanotechnol. Rev. 5 75
[10] Regonini D, Bowen C R, Jaroenworaluck A and Stevens R 2013 Mater. Sci. Eng. R 74 377
[11] Kowalski D, Kim D and Schmuki P 2013 Nano Today 8 235
[12] Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385
[13] Zubair M, Kim H, Razzaq A, Grimes C A and In S 2018 J. CO2 Util. 26 70
[14] Zhang Y, Cui W Q, An W J, Liu L, Liang Y H and Zhu Y F 2018 Appl. Catal. B-Environ. 221 36
[15] Ji L J, Zhang Y H, Miao S Y, Gong M D and Liu X 2017 Carbon 125 544
[16] Georgieva J, Valova E, Armyanov S, Tatchev D, Sotiropoulos S, Avramova I, Dimitrova N, Hubin A and Steenhaut O 2017 Appl. Sur. Sci. 413 284
[17] Wang M Y, Ioccozia J, Sun L, Lin C J and Lin Z Q 2014 Energy Environ. Sci. 7 2182
[18] Zaleska A 2008 Recent Pat. Eng. 2 157
[19] Devi L G and Kavitha R 2014 RSC Adv. 4 28265
[20] Wang W, Tadé M O and Shao Z P 2018 Prog. Mater. Sci. 92 33
[21] Etacheri V, Valentin C D, Schneider J, Bahnemann D and Pillai S C 2015 J. Photoch. Photobio. C 25 1
[22] Lynch J, Giannini C, Cooper J K, Loiudice A, Sharp I D and Buonsanti R 2015 J. Phys. Chem. C 119 7443
[23] Jiang X D, Guan X Y, Huang J J, Fan X L and Xue D S 2019 Acta Phys. Sin. 68 126102 (in Chinese)
[24] Dai L H, Bi D W, Hu Z Y, Liu X N, Zhang M Y, Zhang Z X and Zou S C 2018 Chin. Phys. B 27 048503
[25] Zhou X M, Hublein V, Liu N, Nguyen N T, Zolnhofer E M, Tsuchiya H, Killian M S, Meyer K, Frey L and Schmuki P 2016 Angew. Chem. Int. Ed. 55 3763
[26] Wang G M, Xiao X H, Li W Q, Lin Z Y, Zhao Z P, Chen C, Wang C, Li Y J, Huang X Q, Miao L, Jiang C Z, Huang Y and Duan X F 2015 Nano Lett. 15 4692
[27] Han L, Xin Y J, Liu H L, Ma X X and Tang G Z 2010 J. Hazard. Mater. 175 524
[28] Li J, Hou X G, Sun T T, Han J, Liu H L and Li D J 2019 Surf. Coat. Tech. 365 123
[29] Wang G S, Lin Y M, Zhao Y L, Jiang Z Y and Dong X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
[30] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 1169
[31] Tian P L, Jiang Z Y, Zhang X D, Zhou B, Dong Y R and Liu R 2017 Chin. Phys. B 26 087102
[32] Yu D D, Zhou W, Liu Y Y, Zhou B Z, Wu P 2015 Phys. Lett. A 379 1666
[33] Liu Y Y, Zhou W and Wu P 2017 Mater. Chem. Phys. 186 333
[34] Ronning C, Borschel C, Geburt S and Niepelt R 2010 Mater. Sci. Eng. R 70 30
[35] Finazzi E, Valentin C D, Selloni A and Pacchioni G 2007 J. Phys. Chem. C 111 9275
[36] Xia L, Yang Y, Cao Y, Liu B, Lia X X, Chen X Y, Song H, Zhang X M, Gao B and Fu J J 2019 Surf. Coat. Tech. 365 237
[37] Peighambardoust N S, Asl S K, Mohammadpour R and Asl S K 2018 Electrochim. Acta 270 245
[38] Yuan B, Wang Y, Bian H D, Shen T K, Wu Y C and Chen Z 2013 Appl. Surf. Sci. 280 523
[39] Mazierski P, Nischk M, Golkowska M, Lisowski W, Gazda M, Winiarski M J, Klimczuk T and Zaleska-Medynska A 2016 Appl. Catal. B-Environ. 196 77
[40] Kodtharin N, Vongwatthaporn R, Nutariya J, Sricheewin C, Timah E N, Sivalertporn K, Thumthan O and Tipparach U 2018 Mater. Today-Proc. 5 14091
[41] Souza J S, Krambrock K, Pinheiro M V B, Ando R A, Guha S and Alves W A 2014 J. Mol. Catal. A-Chem. 394 48
[42] Garcia-Segura S and Brillas E 2017 J. Photoch. Photobio. C 31 1
[43] Xu Y, Ahmed R, Klein D, Cap S, Freedy K, McDonnell S and Zangari G 2019 J. Power Sources 414 242
[44] Pan X Y, Yang M Q, Fu X Z, Zhang N and Xu Y J 2013 Nanoscale 5 3601
[1] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[2] Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Hamed Fatehy. Chin. Phys. B, 2016, 25(4): 047201.
[3] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng, Yang Yan-Qiang, Liu Shu-Tian, Wang Qiang. Chin. Phys. B, 2014, 23(9): 096102.
[4] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng, Yang Yan-Qiang, Liu Shu-Tian, Wang Qiang. Chin. Phys. B, 2014, 23(9): 096105.
[5] Application of TiO2 with different structures in solar cells
Zhang Tian-Hui, Piao Ling-Yu, Zhao Su-Ling, Xu Zheng, Wu Qian, Kong Chao. Chin. Phys. B, 2012, 21(11): 118401.
No Suggested Reading articles found!