Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037303    DOI: 10.1088/1674-1056/ab6c50
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films

Bao-Qing Zhang(张宝庆)1, Gao-Peng Liu(刘高鹏)1, Hai-Tao Zong(宗海涛)2, Li-Ge Fu(付丽歌)2, Zhi-Fei Wei(魏志飞)1, Xiao-Wei Yang(杨晓炜)1, Guo-Hua Cao(曹国华)2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Abstract  Aluminum-doped ZnO (AZO) thin films with thin film metallic glass of Zr50Cu50 as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature on structural, optical, and electrical properties of AZO thin film are investigated. Increasing the thickness of buffer layer and substrate temperature can both promote the transformation of AZO from amorphous to crystalline structure, while they show (100) and (002) unique preferential orientations, respectively. After inserting Zr50Cu50 layer between the glass substrate and AZO film, the sheet resistance and visible transmittance decrease, but the infrared transmittance increases. With substrate temperature increasing from 25 ℃ to 520 ℃, the sheet resistance of AZO(100 nm)/ Zr50Cu50(4 nm) film first increases and then decreases, and the infrared transmittance is improved. The AZO(100 nm)/Zr50Cu50(4 nm) film deposited at a substrate temperature of 360 ℃ exhibits a low sheet resistance of 26.7 Ω/□, high transmittance of 82.1% in the visible light region, 81.6% in near-infrared region, and low surface roughness of 0.85 nm, which are useful properties for their potential applications in tandem solar cell and infrared technology.
Keywords:  aluminum-doped ZnO (AZO)      Zr50Cu50      thin film metallic glass      optoelectrical properties      morphology  
Received:  29 December 2019      Revised:  10 January 2020      Published:  05 March 2020
PACS:  73.21.Ac (Multilayers)  
  42.70.-a (Optical materials)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51571085), the Key Science and Technology Program of Henan Province, China (Grant No. 19212210210), the Foundation of Henan Educational Committee, China (Grant No. 13B430019), and the Henan Postdoctoral Science Foundation, China.
Corresponding Authors:  Hai-Tao Zong, Guo-Hua Cao     E-mail:  haitaozong@163.com;ghcao@hpu.edu.cn

Cite this article: 

Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华) Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films 2020 Chin. Phys. B 29 037303

[1] Yang C W and Park J W 2010 Surf. Coat. Technol. 204 2761
[2] Shahid M U, Deen K M, Ahmad A, Akram M A, Aslam M and Akhtar W 2016 Appl. Nanosci. 6 235
[3] Ruske F, Pflug A, Sittinger V, Werner W, Szyszka B and Christie D J 2008 Thin Solid Films 516 4472
[4] Bamiduro O, Mustafa H, Mundle R, Konda R B and Pradhan A K 2007 Appl. Phys. Lett. 90 252108
[5] Rezaie M N, Manavizadeh N, Abadi E M, Nadimi E and Boroumand F A 2017 Appl. Surf. Sci. 392 549
[6] Babu BJ, Velumani S, Arenas-Alatorre J, Kassiba A, Chavez J, Park H, Hussain S Q, Yi J and Asomoza R 2015 J. Elect. Mat. 44 699
[7] Chen S J, Liu Y C, Ma J G, Lu Y M, Zhang J Y, Shen D Z and Fan X W 2003 J. Cryst. Growth 254 86
[8] Ashrafi A A, Ueta A, Kumano H and Suemune I 2000 J. Cryst. Growth 221 435
[9] Koike K, Komuro T, Ogata K, Sasa S, Inoue M and Yano M 2004 Physica E 21 679
[10] Crupi I, Boscarino S, Strano V, Mirabella S, Simone F and Terrasi A 2012 Thin Solid Films 520 4432
[11] Lee C J, Lin H K, Sun S Y and Huang J C 2010 Appl. Surf. Sci. 257 239
[12] Lin H K, Cheng K C and Huang J C 2015 Nanoscale Res. Lett. 10 274
[13] Lin H K and Chung B F 2019 Appl. Surf. Sci. 467-468 249
[14] Chu C W, Jason S C, Chen G J and Chiu S M 2008 Surf. Coat. Technol. 202 5564
[15] Lin Y T, Chung Y L, Wang Z K and Huang J C 2015 Intermetallics 57 133
[16] Liu S Y, Cao Q P, Qian X, Wang C, Wang X D, Zhang D X, Hu X L, Xu W, Ferry M and Jiang J Z 2015 Thin Solid Films 595 17
[17] Chu J P, Wang C Y, Chen L J and Chen Q 2011 Surf. Coat. Technol. 205 2914
[18] Coman T, Ursu E L, Nica V, Tiron V, Olaru M, Cotofana C, Dobromir M, Coroaba A, Dragos O G, Lupu N, Caltun O F and Ursu C 2014 Thin Solid Films 571 198
[19] Pat S, Mohammadigharehbagh R, Özen S, Şenay V, Yudar H H and Korkmaz S 2017 Vacuum 141 210
[20] Saini S, Mele P, Oyake T, Shiomi J, Niemelä J P, Karppinen M, Miyazaki K, Li C Y, Kawaharamura T, Ichinosef A and Molina-Lunag L 2019 Thin Solid Films 685 180
[21] Chen S, Warwick M E A and Binions R 2015 Sol. Energy Mater. Sol. Cells 137 202
[22] Banerjee P, Lee W J, Bae K R, Lee S B and Rubloff G W 2010 J. Appl. Phys. 108 043504
[23] Cao G H, Liu K, Liu G P, Zong H T, Balab H and Zhang B Q 2019 J. Non-Cryst Solids 513 105
[24] Yu Y Y, Xi F, Dai, C D, Cai L C, Tan Y, Li X M, Wu Q and Tan H 2015 Chin. Phys. B 24 066201
[25] Kyeong J S, Kim D H, Lee J I and Park E S 2012 Intermetallics 31 9
[26] Liu Y D, Wang X Y, Han Y and Chen H 2018 Bull. Mater. Sci. 41 106
[27] Rezaie M N, Manavizadeh N, Nadimi E and Boroumand F A 2017 J. Mater. Sci.: Mater. Electron. 28 9328
[28] Hu X X 2018 The microstructure and optical and electrical properties of the Cu50Zr50 thin film metallic glasses (MS Thesis) (Harbin: Harbin Institute of Technology) (in Chinese)
[29] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[30] Nomoto J I, Oda J I, Miyata T and Minami T 2010 Thin Solid Film 519 1587
[31] Haacke G 1976 J. Appl. Phys. 47 4086
[32] Papadopoulou E L, Varda M, Kouroupis-Agalou K, Androulidaki M, Chikodze E, Galtier P, Huyberechts G and Aperathitis E 2008 Thin Solid Film 516 8141
[33] Lin C J, Li X Y and Xu C Y 2019 J. Mater. Sci.: Mater. Electron. 30 721
[34] Yu P, Bai H Y, Tang M B, Wang W L and Wang W H 2005 Acta Phys. Sin. 54 3284 (in Chinese)
[1] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[2] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[3] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[4] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[5] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[6] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[7] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[8] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[9] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
[10] Fabrication of mixed perovskite organic cation thin films via controllable cation exchange
Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀). Chin. Phys. B, 2018, 27(2): 024208.
[11] An infrared and visible image fusion method based uponmulti-scale and top-hat transforms
Gui-Qing He(何贵青), Qi-Qi Zhang(张琪琦), Jia-Qi Ji(纪佳琪), Dan-Dan Dong(董丹丹), Hai-Xi Zhang(张海曦), Jun Wang(王珺). Chin. Phys. B, 2018, 27(11): 118706.
[12] Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+
Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰). Chin. Phys. B, 2017, 26(8): 087801.
[13] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[14] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威). Chin. Phys. B, 2017, 26(12): 128102.
[15] Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells
Hui Wei(韦慧), Yang Tang(汤洋), Bo Feng(冯波), Hui You(尤晖). Chin. Phys. B, 2017, 26(12): 128801.
No Suggested Reading articles found!