Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037305    DOI: 10.1088/1674-1056/ab6c4e

Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts

Ye Zhang(张也)1, Huai-Hong Guo(郭怀红)1, Bao-Juan Dong(董宝娟)2,4,5, Zhen Zhu(朱震)3, Teng Yang(杨腾)2, Ji-Zhang Wang(王吉章)2, Zhi-Dong Zhang(张志东)2
1 College of Sciences, Liaoning Shihua University, Fushun 113001, China;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
3 Materials Department, University of California, Santa Barbara, CA 93106, USA;
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α, β, and cubic (c) phases, of two-dimensional (2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.
Keywords:  tailoring electronic properties      two-dimensional antimonene      isoelectronic counterparts  
Received:  18 December 2019      Revised:  06 January 2020      Published:  05 March 2020
PACS:  73.61.Cw (Elemental semiconductors)  
  61.46.-w (Structure of nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51702146), the College Students' Innovation and Entrepreneurship Projects, China (Grant No. 201710148000072), and Liaoning Province Doctor Startup Fund, China (Grant No. 201601325).
Corresponding Authors:  Huai-Hong Guo, Bao-Juan Dong, Zhen Zhu, Teng Yang     E-mail:;;;

Cite this article: 

Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东) Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts 2020 Chin. Phys. B 29 037305

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nature Nanotech 6 147
[3] Guo H H, Yang, T, Yamamoto M, Zhou L, Ishikawa R, Ueno K, Tsukagoshi K, Zhang Z D, Dresselhaus M S and Saito R 2015 Phys. Rev. B 91 205415
[4] Tao P, Guo H H, Yang T and Zhang Z D 2014 J. Appl. Phys. 115 054305
[5] Guo H H, Yang T, Tao P, Wang Y and Zhang Z D 2013 J. Appl. Phys. 113 013709
[6] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[7] Huang S X, Tatsumi Y, Ling X, et al. 2016 ACS Nano 10 8964
[8] Wang Z, Zhang T Y, Ding M, et al. 2018 Nat. Nanotechnol. 13 554
[9] Wang H, Chen M L, Zhu M J, et al. 2019 Nature Commun. 10 2302
[10] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[11] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotech. 9 372
[12] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523
[13] Yang T, Dong B, Wang J, Zhang Z, Guan J, Kuntz K, Warren S C and Tománek D 2015 Phys. Rev. B 92 125412
[14] Kuntz K L, Wells R A, Hu J, Yang T, Dong B J, Guo H H, Woomer A H, Druffel D L, Alabanza A, Tománek D and Warren S C 2017 ACS Appl. Mater. & Inter. 9 9126
[15] Sharma S, Kumar S and Schwingenschlgl U 2017 Phys. Rev. Appl. 8 4
[16] Zhu Z, Guan J and Tománek D 2015 Nano Lett. 15 6042
[17] Zhu Z, Guan J, Liu D and Tománek D 2015 ACS Nano 9 8284
[18] Zhu Z, Dong B J, Guo H H, Yang T and Zhang Z D 2020 Chin. Phys. B 29 046101
[19] Dong B J, Wang Z H, Hung N T, Oganov A R, Yang T, Saito R and Zhang Z D 2019 Phys. Rev. Materials 3 013405
[20] Novoselov K S, Mishchenko A, Carvalho, A and Castro Neto A H 2016 Science 353 aac9439
[21] Zhu Z, Guan J and Tomanek D 2015 Phys. Rev. B 91 161404(R)
[22] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angewandte Chemie 127 3155
[23] Wang J, Yang T, Zhang Z and Yang L 2018 Appl. Phys. Lett. 112 213104
[24] Singh D, Gupta S K, Sonvanea Y and Lukaćević I 2016 J. Mater. Chem. C 4 6386
[25] Guan J, Zhu Z and Tomanek D 2014 ACS Nano 8 12763
[26] Wang J, Dong B J, Guo H, Yang T, Zhu Z, Hu G, Saito R and Zhang Z D 2017 Phys. Rev. B 95 045404
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Ozcelik V O, Azadani J G, Yang C, Koester S J and Low T 2016 Phys. Rev. B 94 035125
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[33] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[34] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[35] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
[36] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[37] Zimmermann H 2000 Integrated Silicon Optoelectronics, Springer Series in Optical Sciences (New York: Springer)
[38] Akturk O Ü, Ożcelik V O and Ciraci S 2015 Phys. Rev. B 91 235446
[39] Harrison W A 1989 Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (New York: Dover Publications)
[40] Harrison W A 1999 Elementary electronic structure (Sigapore: World Scientific)
[41] Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
[42] Aseginolaza U, Bianco R, Monacelli L, Paulatto L, Calandra M, Mauri F, Bergara A and Errea I 2019 Phys. Rev. Lett. 122 075901
[43] Aseginolaza U, Bianco R, Monacelli L, Paulatto L, Calandra M, Mauri F, Bergara A and Errea I 2019 Phys. Rev. B 100 214307
[44] Errea I, Rousseau B and Bergara A 2011 Phys. Rev. Lett. 106 165501
[45] Wallbank J R, Mucha-Kruczyński M, Chen X and Fal'ko V I 2015 Ann. Phys. 527 359
[46] Carr S, Massatt D, Torrisi S B, Cazeaux P, Luskin M and Kaxiras E 2018 Phys. Rev. B 98 224102
[47] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[48] Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Jpn. J. Appl. Phys. 34 L797
[49] Withers F, Pozo-Zamudio O D, Mishchenko A, et al. 2015 Nat. Mater. 14 301
[50] Politano A, Slotman G J, Roldán R, Chiarello G, Camp D, Katsnelson M I and Yuan S J 2017 2D Mater. 4 021001
[51] Calman E, Dorow C, Fogler M, Butov L, Hu S, Mishchenko A and Geim A 2016 Appl. Phys. Lett. 108 101901
[52] Jauregui L A, Joe, A Y, Pistunova K, et al. 2019 Science 366 870
[53] Shim J, Kang D H, Kim Y, Kum H, Kong W, Bae S H, Almansouri I, Lee K, Park J H and Kim J 2018 Carbon 133 78
[54] Koswatta S O, Koester S J and Haensch W 2010 IEEE Trans. Electron Devices 57 3222
[55] Li X X, Fan Z, Liu P, et al. 2017 Nat. Commun. 8 970
[1] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[2] Two-dimensional topological insulators with large bulk energy gap
Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬). Chin. Phys. B, 2016, 25(11): 117312.
[3] Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process
Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳). Chin. Phys. B, 2016, 25(2): 027307.
[4] Anisotropic transport properties of charge-ordered La5/8-yPryCa3/8MnO3 (y=0.43) film
Liu Yuan-Bo, Wang Shuan-Hu, Sun Ji-Rong, Shen Bao-Gen. Chin. Phys. B, 2015, 24(5): 057304.
[5] Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application
Qin Yu-Xiang, Liu Chang-Yu, Liu Yang. Chin. Phys. B, 2015, 24(2): 027304.
[6] High dV/dt immunity MOS controlled thyristor using a double variable lateral doping technique for capacitor discharge applications
Chen Wan-Jun, Sun Rui-Ze, Peng Chao-Fei, Zhang Bo. Chin. Phys. B, 2014, 23(7): 077307.
[7] Effects of rapid thermal annealing on room temperature NO2-sensing properties of WO3 thin film under LED radiation
Hu Ming, Jia Ding-Li, Liu Qing-Lin, Li Ming-Da, Sun Peng. Chin. Phys. B, 2013, 22(6): 068204.
[8] The light-enhanced NO2 sensing properties of porous silicon gas sensors at room temperature
Chen Hui-Qing,Hu Ming,Zeng Jing,Wang Wei-Dan. Chin. Phys. B, 2012, 21(5): 058201.
[9] Room-temperature direct-bandgap photoluminescence from strain-compensated Ge/SiGe multiple quantum wells on silicon
Hu Wei-Xuan, Cheng Bu-Wen, Xue Chun-Lai, Zhang Guang-Ze, Su Shao-Jian, Zuo Yu-Hua, Wang Qi-Ming. Chin. Phys. B, 2012, 21(1): 017805.
[10] Thermal effect mechanism of magnetoresistance in p-type diamond films
Qin Guo-Ping, Kong Chun-Yang, Ruan Hai-Bo, Huang Gui-Juan, Cui Yu-Ting, Fang Liang. Chin. Phys. B, 2010, 19(11): 117501.
[11] Zero biased Ge-on-Si photodetector with a bandwidth of 4.72~GHz at 1550~nm
Xue Hai-Yun, Xue Chun-Lai, Cheng Bu-Wen, Yu Yu-De, Wang Qi-Ming. Chin. Phys. B, 2009, 18(6): 2542-2544.
[12] Solution-based metal induced crystallization of a-Si
Wu Chun-Ya, Li Xue-Dong, Zhao Shu-Yun, Li Juan, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Fang. Chin. Phys. B, 2009, 18(3): 1237-1241.
[13] Effect of hydrogenation time on magnetic and electrical properties of polycrystalline Si0.956Mn0.044:B thin films
Liu Xing-Chong, Lu Zhi-Hai, Lin Ying-Bin, Wang Jian-Feng, Lu Zhong-Lin, Lü Li-Ya, Zhang Feng-Ming, Du You-Wei. Chin. Phys. B, 2009, 18(2): 778-782.
[14] Effects of deposition pressure and plasma power on the growth and properties of boron-doped microcrystalline silicon films
Chen Yong-Sheng, Yang Shi-E, Wang Jian-Hua, Lu Jing-Xiao, Gao Xiao-Yong, Gu Jin-Hua, Zheng Wen, Zhao Shang-Li. Chin. Phys. B, 2008, 17(4): 1394-1399.
[15] Electronic structure and defect states of transition films from amorphous to microcrystalline silicon studied by surface photovoltage spectroscopy
Yu Wei, Wang Chun-Sheng, Lu Wan-Bing, He Jie, Han Xiao-Xia, Fu Guang-Sheng. Chin. Phys. B, 2007, 16(8): 2310-2314.
No Suggested Reading articles found!