Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037304    DOI: 10.1088/1674-1056/ab6c4c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles

Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires (N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of N-SiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature, for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity-temperature characteristics, that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing. These results contribute to the electronic application of nanodevices.
Keywords:  N-      P-      As-doped SiC nanowires      transport properties      first-principles theory  
Received:  15 December 2019      Revised:  13 January 2020      Published:  05 March 2020
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  61.72.U- (Doping and impurity implantation)  
  63.20.dk (First-principles theory)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574261) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203261).
Corresponding Authors:  Xiao-Yong Fang     E-mail:  fang@ysu.edu.cn

Cite this article: 

Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇) Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles 2020 Chin. Phys. B 29 037304

[1] Fan Y, Wu X L, Zhao P Q and Chu P K 2006 Phys. Lett. A 360 336
[2] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica B 539 72
[3] Wang J, Xiong S J, Wu X L, Li T H and Chu P K 2010 Nano Lett. 10 1466
[4] Hu P, Dong S, Zhang X H, Gu K X, Chen G Q and Hu Z 2017 Sci. Rep. 7 3011
[5] Bekaroglu E, Topsakal M, Cahangirov S and Ciraci S 2010 Phys. Rev. B 81 075433
[6] Gong P, Li Y J, Jia Y H, Li Y L, Li S L, Fang X Y and Cao M S 2018 Phys. Lett. A 382 2484
[7] Li X X, Tian Y, Gao F M, Wang L, Chen S L and Yang W Y 2018 Ceram. Int. 44 19021
[8] Li S Y, Li W Q, Zhao H P and Du L Z 2014 Nanosci. Nanotech. Lett. 6 1091
[9] Matsunami H 2006 Microelectron. Eng. 83 2
[10] Xiong S, Latour B, Ni Y, Volz S and Chalopin Y 2015 Phys. Rev. B 91 224307
[11] Xin X, Yan F, Koeth T W, et al. 2005 Electron. Lett. 41 1192
[12] Wu I J and Guo G Y 2008 Phys. Rev. B 78 035447
[13] Li Y J, Li Y L, Li S L, Gong P and Fang X Y 2017 Chin. Phys. B 26 047309
[14] Phan H P, Dinh T, Kozeki T, Nguyen T K, Qamar A and Namazu T 2016 IEEE Electron Dev. Lett. 37 1029
[15] Zhang Z and Xu Y 2013 Superlattice Microstructure 57 19
[16] Li S L, Li Y L, Li Y J, Gong P and Fang X Y 2017 Int. J. Mod. Phys. B 31 1750173
[17] Ren J F, Zhang Y R, Zhang L, Yuan X B and Hu G C 2014 Mod. Phys. Lett. B 28 1450195
[18] Mpourmpakis G, Froudakis G E and Lithoxoos G P 2006 J. Samios, Nano Lett. 6 1581
[19] Yang L, Zhao H, Fan S M, Deng S S, Lv Q, Lin J and Li C P 2014 Biosens. Bioelectron. 57 199
[20] Raynaud C 2001 J. Non-Cryst. Solids 280 1
[21] Fan X, Ye R, Peng Z, Wang J, Fan A and Guo X 2016 Nanotechnology 27 255604
[22] Kityk I V, Makowska-Janusik M, Kassiba A, et al. 2000 Opt. Mater. 13 449
[23] Hua A, Wei F, Pan D S, Yang L, Feng Y, Li M Z, Wang Y, An J, Geng D Y, Liu H Y, Wang Z H, Liu W, Ma S, He J and Zhang Z D 2017 Appl. Phys. Lett. 111 223105
[24] Yang H J, Cao M S, Li Y, Shi H L, Hou Z L, Fang X Y, Jin H B, Wang W Z and Yuan J 2014 Adv. Opt. Mater. 2 214
[25] Zheng H, Zhang Y, Yan Y, et al. 2014 Carbon 78 288
[26] Li H P, Fu W Y, Shen X P, Han K and Wang W H 2017 Chin. Phys. B 26 127801
[27] Zhang K L, Zhang J Y, Hou Z L, Bi S and Zhao Q L 2019 Carbon 141 608
[28] Zhang X, Chen Y, Xie Z, et al. 2010 J. Phys. Chem. C 114 8251
[29] Yang Y, Yang H, Wei G D, Wang L, Shang M H, Yang Z B, Tang B and Yang W Y 2014 J. Mater. Chem. C 2 4515
[30] Zhao J, Meng A, Zhang M, Ren W P and Li Z J 2015 Phys. Chem. Chem. Phys. 17 28658
[31] Chen Y Q, Zhang X N and Xie Z P 2015 ACS Nano 9 8054
[32] Li Y J, Li S L, Gong P, Li Y L, Cao M S and Fang X Y 2018 Physica E 98 191
[33] Chen S L, Shang M H, et al. 2016 J. Mater. Chem. C 4 7391
[34] Choueib M, Ayari A, Vincent P, Perisanu S and Purcell S T 2011 J. Appl. Phys. 109 073709
[35] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
[36] Li S L, Yu X X, Li Y L, Gong P, Jia Y H, Fang X Y and Cao M S 2019 Eur. Phys. J. B 92 155
[37] Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[38] Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L and Cao M S 2015 Phys. Lett. A 379 2245
[1] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安)†, Tiao-Fang Liu(刘调芳)\cclink, Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[2] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[3] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友)†. Chin. Phys. B, 2021, 30(1): 018703.
[4] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[5] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Epitaxial synthesis and electronic properties of monolayer Pd2Se3
Peng Fan(范朋), Rui-Zi Zhang(张瑞梓), Jing Qi(戚竞), En Li(李恩), Guo-Jian Qian(钱国健), Hui Chen(陈辉), Dong-Fei Wang(王东飞), Qi Zheng(郑琦), Qin Wang(汪琴), Xiao Lin(林晓), Yu-Yang Zhang(张余洋), Shixuan Du(杜世萱), Hofer W A, Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(9): 098102.
[8] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[9] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[12] Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials
Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明). Chin. Phys. B, 2020, 29(9): 090702.
[13] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[14] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[15] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
No Suggested Reading articles found!