Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030304    DOI: 10.1088/1674-1056/ab6c45
GENERAL Prev   Next  

Quantum speed limit time of a non-Hermitian two-level system

Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发)
Synergetic Innovation Center for Quantum Effects and Application, and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  We investigated the quantum speed limit time of a non-Hermitian two-level system for which gain and loss of energy or amplitude are present. Our results show that, with respect to two distinguishable states of the non-Hermitian system, the evolutionary time does not have a nonzero lower bound. The quantum evolution of the system can be effectively accelerated by adjusting the non-Hermitian parameter, as well as the quantum speed limit time can be arbitrarily small even be zero.
Keywords:  quantum speed limit time      non-Hermitian dynamics      quantum optics  
Received:  03 November 2019      Revised:  05 January 2020      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Mao-Fa Fang     E-mail:

Cite this article: 

Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发) Quantum speed limit time of a non-Hermitian two-level system 2020 Chin. Phys. B 29 030304

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[3] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[4] Bender C M and Brody D C 2009 Lect. Notes Phys. 789 341
[5] Assis P E G and Fring A 2008 J. Phys. A: Math. Theor. 41 244002
[6] Günther U and Samsonov B F 2008 Phys. Rev. A 78 042115
[7] Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
[8] Kawabata K, Ashida Y and Ueda M 2017 Phys. Rev. Lett. 119 190401
[9] Mostafazadeh A 2007 Phys. Rev. Lett. 99 130502
[10] Mostafazadeh A 2009 Phys. Rev. A 79 014101
[11] Uzdin R, Günther U, Rahav S and Moiseyev N 2012 J. Phys. A: Math. Theor. 45 415304
[12] Brody D C and Graefe E M 2012 Phys. Rev. Lett. 109 230405
[13] Sergi A and Zloshchastiev K G 2013 Int. J. Mod. Phys. B 27 1350163
[14] Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
[15] Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
[16] Sergi A and Zloshchastiev K G 2015 Phys. Rev. A 91 062108
[17] Gardas B, Deffner S and Saxena A 2016 Phys. Rev. A 94 040101
[18] Joshi S and Galbraith I 2018 Phys. Rev. A 98 042117
[19] Wang Y Y and Fang M F 2018 Quantum Inf. Proces. 17 208
[20] Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
[21] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[22] Rotter I 2009 J. Phys. A: Math. Theor. 42 153001
[23] Moiseyev N 2011 Non Hermitian Quantum Mechanics (Cambridge: Cambridge University Press)
[24] Zloshchastiev K G and Sergi A 2014 J. Mod. Opt. 61 1298
[25] Mandelstam L and Tamm Ig 1945 J. Phys. (USSR) 9 249
[26] Margolus N and Levitin L B 1998 Physica D 120 188
[27] Bender C M 2007 Rep. Prog. Phys. 70 947
[28] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
[29] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[30] Campo A del, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[31] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[32] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[33] Rüter C E, Makris K G, El Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[34] Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554
[35] Liu Z P, Zhang J, Ożdemir S K, Peng B, Jing H, Lu Ẍ Y, Li C W, Yang L, Nori F and Liu Y X 2016 Phys. Rev. Lett. 117 110802
[36] Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F and Guo G C 2016 Nat. Photon. 10 642
[37] Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455
[38] Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402
[39] Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901
[40] Jin L and Song Z. 2011 Phys. Rev. A 84 042116
[41] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information (10th Anniversary Edition) (New York: Cambridge University Press)
[1] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[4] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[5] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[6] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[7] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[8] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[9] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[10] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[11] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[12] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[13] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
[14] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[15] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
No Suggested Reading articles found!