Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038504    DOI: 10.1088/1674-1056/ab6969
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector

Xuan-Zhang Li(李炫璋)1,2, Ling Sun(孙令)1,2, Jin-Lei Lu(鲁金蕾)1,2, Jie Liu(刘洁)1,2, Chen Yue(岳琛)1,2, Li-Li Xie(谢莉莉)3, Wen-Xin Wang(王文新)1, Hong Chen(陈弘)1,4, Hai-Qiang Jia(贾海强)1,4, Lu Wang(王禄)1
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Detector Technology Laboratory, Beijing Institute of Space Mechanics&Electricity, Beijing 100076, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We present a method to extend the operating wavelength of the interband transition quantum well photodetector from an extended short-wavelength infrared region to a middle-wavelength infrared region. In the modified InAsSb quantum well, GaSb is replaced with AlSb/AlGaSb, the valence band of the barrier material is lowered, the first restricted energy level is higher than the valence band of the barrier material, the energy band structure forms type-II structure. The photocurrent spectrum manifest that the fabricated photodetector exhibits a response range from 1.9 μm to 3.2 μm with two peaks at 2.18 μm and 3.03 μm at 78 K.
Keywords:  photodetector      energy band calculation      InAsSb/AlSb/AlGaSb quantum well      interband transition  
Received:  25 November 2019      Revised:  27 December 2019      Published:  05 March 2020
PACS:  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, 11374340, and 11474205), the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission of China (Grant No. Z151100003515001), and the National Key Technology R&D Program of China (Grant No. 2016YFB0400302).
Corresponding Authors:  Lu Wang     E-mail:  lwang@iphy.ac.cn

Cite this article: 

Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄) A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector 2020 Chin. Phys. B 29 038504

[1] Craig A P, Al-Saymari F, Jain M, Bainbridge A, Savich G R, Golding T, Krier A, Wicks G W and Marshall A R 2019 Appl. Phys. Lett. 114 151107
[2] Hu W, Li Q, Chen X and Lu W 2019 Acta Phys. Sin. 68 120701 (in Chinese)
[3] Letka V, Bainbridge A, Craig A P, Al-Saymari F and Marshall A R J 2019 Opt. Express 27 23970
[4] Pavlov N and Zegrya G 2016 J. Phys.: Confer. Ser. 769 012076
[5] Cardimona D A, Huang D H, Cowan V and Morath C 2011 Infrared Phys. & Technol. 54 283
[6] Rogalski A 2011 Infrared Phys. & Technol. 54 136
[7] Rogalski A 2010 J. Mod. Opt. 57 1716
[8] Rogalski A 2009 Acta Phys. Pol. 116 389
[9] Rogalski A, Antoszewski J and Faraone L 2009 J. Appl. Phys. 105 091101
[10] Rogalski A 2003 Prog. Quantum Electron. 27 59
[11] Zhang Y, Zhang Y, Guan M, Cui L, Wang C and Zeng Y 2013 J. Appl. Phys. 114 111108
[12] Belenky G, Wang D, Lin Y, Donetsky D, Kipshidze G, Shterengas L, Westerfeld D, Sarney W L and Svensson Stefan P 2013 Appl. Phys. Lett. 102 111108
[13] Maimon S and Wicks G W 2006 Appl. Phys. Lett. 89 151109
[14] Tong J, Tobing L Y, Ni P and Zhang D H 2018 Appl. Surf. Sci. 427 605
[15] Ariyawansa G, Reyner C J, Steenbergen E H, Duran J M, Reding J D, Scheihing J E, Bourassa H R, Liang B L and Huffaker D L 2016 Appl. Phys. Lett. 108 022106
[16] Huang Y, Ryou J H, Dupuis R, D'costa V, Steenbergen E, Fan J, Zhang Y H, Petschke A, Mandl M and Chuang S L 2011 J. Cryst. Growth 314 92
[17] Coderre W M and Woolley J C 1970 Can. J. Phys. 48 463
[18] D'souza A, Robinson E, Ionescu A C, Okerlund D, De Lyon T J, Sharifi H, Roebuck M, Yap D, Rajavel R D, Dhar N, Wijewarnasuriya P S and Grein C 2012 J. Electron. Mater. 41 2671
[19] Yang H, Ma Z, Jiang Y, Wu H, Zuo P, Zhao B, Jia H and Chen H 2017 Sci. Rep. 7 43357
[20] Wu H, Ma Z, Jiang Y, Wang L, Yang H, Li Y, Zuo P, Jia H, Wang W, Zhou J, Liu W and Chen H 2016 Chin. Phys. B 25 117803
[21] Sun Q, Wang L, Jiang Y, Ma Z, Wang W, Sun L, Wang W, Jia H, Zhou J and Chen H 2016 Chin. Phys. Lett. 33 106801
[22] Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H and Chen H 2016 Chin. Phys. B 25 097307
[23] Liu J, Wang L, Sun L, Wang W-Q, Wu H, Jiang Y, Ma Z, Wang W, Jia h and Chen H 2018 Acta Phys. Sin. 67 128101 (in Chinese)
[24] Liu J, Lu J, Yue C, Li X, Chen H and Wang L 2019 Appl. Phys. Express 12 032005
[25] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
[26] Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X, Jia H Q, Zhou J M and Chen H 2015 Chin. Phys. Lett. 32 106801
[27] Mohammedy F M and Deen M J 2009 J. Mater. Sci.: Mater. Electron. 20 1039
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[3] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[4] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[5] Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions
Zhi-Ming Bai(白智明), Ying-Hua Zhang(张英华), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳). Chin. Phys. B, 2020, 29(12): 128202.
[6] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[7] Rectifying characteristics and solar-blind photoresponse in β-Ga2O3/ZnO heterojunctions
Xiao-Fei Ma(马晓菲), Yuan-Qi Huang(黄元琪), Yu-Song Zhi(支钰崧), Xia Wang(王霞), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(8): 088503.
[8] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[9] Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同). Chin. Phys. B, 2019, 28(4): 048502.
[10] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[11] Ultraviolet photodetectors based on wide bandgap oxide semiconductor films
Changqi Zhou(周长祺), Qiu Ai(艾秋), Xing Chen(陈星), Xiaohong Gao(高晓红), Kewei Liu(刘可为), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(4): 048503.
[12] SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(3): 037801.
[13] Efficient doping modulation of monolayer WS2 for optoelectronic applications
Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(3): 037803.
[14] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[15] Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias
Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚). Chin. Phys. B, 2019, 28(3): 038501.
No Suggested Reading articles found!