Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 036101    DOI: 10.1088/1674-1056/ab695b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields

Gan Ren(任淦), Shikai Tian(田时开)
Departments of Physics&Key Laboratory of Photonic and Optical Detection in Civil Aviation, Civil Aviation Flight University of China, Guanghan 618307, China
Abstract  Both ionic solutions under an external applied static electric field E and glassy-forming liquids under undercooled state are in non-equilibrium state. In this work, molecular dynamics (MD) simulations with three aqueous alkali ion chloride (NaCl, KCl, and RbCl) ionic solutions are performed to exploit whether the glass-forming liquid analogous fractional variant of the Stokes-Einstein relation also exists in ionic solutions under E. Our results indicate that the diffusion constant decouples from the structural relaxation time under E, and a fractional variant of the Stokes-Einstein relation is observed as well as a crossover analogous to the glass-forming liquids under cooling. The fractional variant of the Stokes-Einstein relation is attributed to the E introduced deviations from Gaussian and the nonlinear effect.
Keywords:  ionic solutions      Stokes-Einstein relation      non-equilibrium steady state      molecular dynamics simulation  
Received:  03 August 2019      Revised:  23 December 2019      Published:  05 March 2020
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  78.30.cd (Solutions and ionic liquids)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the Science Foundation of Civil Aviation Flight University of China (Grant Nos. J2019-059 and JG2019-19).
Corresponding Authors:  Gan Ren     E-mail:  rengan@alumni.itp.ac.cn

Cite this article: 

Gan Ren(任淦), Shikai Tian(田时开) Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields 2020 Chin. Phys. B 29 036101

[1] Equey J F, Müller S, Tsukada A and Haas O 1989 J. Appl. Electrochem. 19 65
[2] Yoshida H, Sone M, Mizushima A, Abe K, Tao X T, Ichihara S and Miyata S 2002 Chem. Lett. 31 1086
[3] Conway B 1992 Chem. Soc. Rev. 21 253
[4] Gurau M C, Lim S M, Castellana E T, Albertorio F, Kataoka S and Cremer P S 2004 J. Am. Chem. Soc. 126 10522
[5] Zhang Y and Cremer P S 2006 Curr. Opin. Chem. Biol. 10 658
[6] Debye P and Hückel E 1923 Phys. Z. 24 185
[7] Chialvo A, Cummings P, Cochran H, Simonson J and Mesmer R 1995 J. Chem. Phys. 103 9379
[8] Bian H, Wen X, Li J, Chen H, Han S, Sun X, Song J, Zhuang W and Zheng J 2011 Proc. Natl. Acad. Sci. USA 108 4737
[9] Smith D E and Dang L X 1994 J. Chem. Phys. 100 3757
[10] Sherman D M and Collings M D 2002 Geochem. Trans. 3 102
[11] Zahn D 2004 Phys. Rev. Lett. 92 040801
[12] Ren G and Wang Y T 2015 Chin. Phys. B 24 126402
[13] Swallen S F, Bonvallet P A, McMahon R J and Ediger M D 2003 Phys. Rev. Lett. 90 015901
[14] Mapes M K, Swallen S F and Ediger M D 2006 J. Phys. Chem. B 110 507
[15] White J A 1999 J. Chem. Phys. 111 9352
[16] Barrat J L, Roux J N and Hansen J P 1990 Chem. Phys. 149 197
[17] Thirumalai D and Mountain R D 1993 Phys. Rev. E 47 479
[18] Yi S S, Pan C and Hu Z H 2015 Chin. Phys. B 24 120201
[19] Lee S H and Rasaiah J C 1994 J. Chem. Phys. 101 6964
[20] Koneshan S, Rasaiah J C, Lynden-Bell R and Lee S 1998 J. Phys. Chem. B 102 4193
[21] Koneshan S, Lynden-Bell R and Rasaiah J C 1998 J. Am. Chem. Soc. 120 12041
[22] Kashyap H K, Annapureddy H V, Raineri F O and Margulis C J 2011 J. Phys. Chem. B 115 13212
[23] Ren G, Shi R and Wang Y 2014 J. Phys. Chem. B 118 4404
[24] Murad S 2011 J. Chem. Phys. 134 114504
[25] Lewis L J and Wahnström G 1994 Phys. Rev. E 50 3865
[26] Mallamace F, Broccio M, Corsaro C, Faraone A, Wanderlingh U, Liu L, Mou C Y and Chen S H 2006 J. Chem. Phys. 124 161102
[27] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
[28] Binder K and Kob W 2011 Glassy materials and disordered solids: An introduction to their statistical mechanics (Singapore: World Scientific)
[29] Habasaki J, Leon C and Ngai K 2017 Top. Appl. Phys. 132
[30] Zhou Y H, Han X J and Li J G 2019 J. Non-Cryst. Solids 517 83
[31] Han X J and Schober H R 2011 Phys. Rev. B 83 224201
[32] Li C H, Han X J, Luan Y W and Li J G 2017 Chin. Phys. B 26 016102
[33] Kumar P, Buldyrev S V, Becker S R, Poole P H, Starr F W and Stanley H E 2007 Proc. Natl. Acad. Sci. USA 104 9575
[34] Jeong D, Choi M Y, Kim H J and Jung Y 2010 Phys. Chem. Chem. Phys. 12 2001
[35] Ikeda A and Miyazaki K 2011 Phys. Rev. Lett. 106 015701
[36] Ren G and Sang G 2018 Chin. Phys. B 27 066101
[37] Berendsen H J, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[38] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[39] Nosé S 1984 J. Chem. Phys. 81 511
[40] Hoover W G 1985 Phys. Rev. A 31 1695
[41] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[42] Anderson J, Ullo J J and Yip S 1987 J. Chem. Phys. 87 1726
[43] Shi R and Wang Y 2013 J. Phys. Chem. B 117 5102
[44] Wolynes P G and Lubchenko V 2012 Structural glasses, supercooled liquids: Theory, experiment and applications (New York: John Wiley & Sons)
[45] Lee S H and Rasaiah J C 1996 J. Phys. Chem. 100 1420
[46] Onsager L and Kim S K 1957 J. Phys. Chem. 61 198
[47] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[48] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[1] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[2] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[3] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[4] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[5] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[6] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[7] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[8] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[9] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[10] Supercooled liquids analogous fractional Stokes-Einstein relation in NaCl solution above room temperature
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2019, 28(7): 076107.
[11] Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲). Chin. Phys. B, 2019, 28(4): 048102.
[12] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[13] Approximate expression of Young's equation and molecular dynamics simulation for its applicability
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍). Chin. Phys. B, 2019, 28(1): 016801.
[14] Potentials of classical force fields for interactions between Na+ and carbon nanotubes
De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(9): 098801.
[15] A simulation study of water property changes using geometrical alteration in SPC/E
Ming-Ru Li(李明儒), Nan Zhang(张楠), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(8): 083103.
No Suggested Reading articles found!