Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034302    DOI: 10.1088/1674-1056/ab6843
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction

Gepu Guo(郭各朴)1, Ya Gao(高雅)1, Yuzhi Li(李禹志)1, Qingyu Ma(马青玉)1, Juan Tu(屠娟)2, Dong Zhang(章东)2
1 School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles (MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses (2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction (MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.
Keywords:  magnetoacoustic tomography with magnetic induction      second harmonic magnetoacoustic responses      magnetic nanoparticles      magnetic force      mechanical oscillations  
Received:  17 November 2019      Revised:  14 December 2019      Accepted manuscript online: 
PACS:  43.80.Ev (Acoustical measurement methods in biological systems and media)  
  72.55.+s (Magnetoacoustic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, and 11604156).
Corresponding Authors:  Qingyu Ma     E-mail:  maqingyu@njnu.edu.cn

Cite this article: 

Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东) Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction 2020 Chin. Phys. B 29 034302

[1] Weissleder R, Nahrendorf M and Pittet M J 2014 Nat. Mater. 13 125
[2] Cabrera D, Coene A, Leliaert J, Artés-Ibáñez E J, Dupré L, Telling N D and Teran F J 2018 ACS Nano 12 2741
[3] Li Q, Kartikowati C W, Horie S, Ogi T, Iwaki T and Okuyama K 2017 Sci. Rep. 7 9894
[4] Chi Q, Ma T, Dong J, Cui Y, Zhang Y, Zhang C, Xu S, Wang X and Lei Q 2017 Sci. Rep. 7 3072
[5] Oh J, Feldman M D, Kim J, Condit C, Emelianov S and Milner T E 2006 Nanotechnology 17 4183
[6] Usov N A and Liubimov B Y 2012 J. Appl. Phys. 112 023901
[7] Chaughule R S, Purushotham S and Ramanujan R V 2012 Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. 82 257
[8] Steinberg I, Ben-David M and Gannot I 2012 Nanomed.: NBM 8 569
[9] Kalambur V S, Han B, Hammer B E, Shield T W and Bischof J C 2005 Nanotechnology 16 1221
[10] Xia R, Li X and He B 2007 Appl. Phys. Lett. 91 083903
[11] Mariappan L, Li X and He B 2011 IEEE Trans. Biomed. Eng. 58 713
[12] Sun X, Zhang F, Ma Q, Tu J and Zhang D 2012 Appl. Phys. Lett. 100 024105
[13] Yu Z, Dai S, Ma Q, Guo G, Tu J and Zhang D 2018 IEEE Trans. Biomed. Eng. 65 2512
[14] Li X, Yu K and He B 2016 Phys. Med. Biol. 61 R249
[15] Hu G and He B 2012 Appl. Phys. Lett. 100 013704
[16] Yan X, Zhang Y and Liu G 2018 Chin. Phys. B 27 104302
[17] Mariappan L, Shao Q, Jiang C, Yu K, Ashkenazi S, Bischof J C and He B 2016 Nanomed.: NBM 12 689
[18] Laurent S, Dutz S, Häfeli U O and Mahmoudi M 2011 Adv. Colloid Interface Sci. 166 8
[19] Derfus A M, von Maltzahn G, Harris T J, Duza T, Vecchio K S, Ruoslahti E and Bhatia S N 2007 Adv. Mater. 19 3932
[20] Stanley S A, Gagner J E, Damanpour S, Yoshida M, Dordick J S and Friedman J M 2012 Science 336 604
[21] Feng X, Gao F and Zheng Y 2013 Appl. Phys. Lett. 103 083704
[22] Piao D, Towner R A, Smith N and Chen W R 2013 Med. Phys. 40 063301
[23] Kellnberger S, Rosenthal A, Myklatun A, Westmeyer G G, Sergiadis G and Ntziachristos V 2016 Phys. Rev. Lett. 116 108103
[24] Carrey J, Connord V and Respaud M 2013 Appl. Phys. Lett. 102 232404
[25] Cao Q, Han X and Li L 2012 J. Phys. D: Appl. Phys. 45 465001
[26] Xiang Q, Zhong J, Zhou M, Cesar P and Liu W 2011 J. Appl. Phys. 109 07B317
[27] Mamiya H and Jeyadevan B 2011 Sci. Rep. 1 157
[28] Zhou Y, Wang J, Sun X, Ma Q and Zhang D 2016 J. Appl. Phys. 119 094903
[29] Guo G, Ding H, Dai S and Ma Q 2017 Chin. Phys. B 26 084301
[30] Tao C, Guo G, Ma Q, Tu J, Dong Z and Hu J 2017 J. Appl. Phys. 122 014901
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[3] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[4] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[5] Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟). Chin. Phys. B, 2019, 28(7): 077504.
[6] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[7] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[8] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[9] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[10] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[11] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei, Xu Xiao-Wen, He Mang, Zhang Hong-Wang. Chin. Phys. B, 2015, 24(6): 067503.
[12] Reception pattern influence on magnetoacoustic tomography with magnetic induction
Sun Xiao-Dong, Wang Xin, Zhou Yu-Qi, Ma Qing-Yu, Zhang Dong. Chin. Phys. B, 2015, 24(1): 014302.
[13] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin, Yu Jing, Hou Yang-Long. Chin. Phys. B, 2015, 24(1): 014704.
[14] A thermo-fluid analysis in magnetic hyperthermia
Iordana Astefanoaei, Ioan Dumitru, Alexandru Stancu, Horia Chiriac. Chin. Phys. B, 2014, 23(4): 044401.
[15] Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer
Yue Xiu-Li, Ma Fang, Dai Zhi-Fei. Chin. Phys. B, 2014, 23(4): 044301.
No Suggested Reading articles found!