ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect |
Yongxia Zhang(张永霞)1, Jinhui Yuan(苑金辉)1,2, Yuwei Qu(屈玉玮)2, Xian Zhou(周娴)1, Binbin Yan(颜玢玢)2, Qiang Wu(吴强)3, Kuiru Wang(王葵如)2, Xinzhu Sang(桑新柱)2, Keping Long(隆克平)1, Chongxiu Yu(余重秀)2 |
1 Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing(USTB), Beijing 100083, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 Department of Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom |
|
|
Abstract A novel plasmonic polarization filter based on the diamond-shape photonic crystal fiber (PCF) is proposed. The resonant coupling characteristics of the PCF polarization filter are investigated by the full-vector finite-element method. By optimizing the geometric parameters of the PCF, when the fiber length is 5 mm, the polarization filter has a bandwidth of 990 nm and an extinction ratio (ER) of lower than -20 dB. Moreover, a single wavelength polarization filter can also be achieved, along with an ER of -279.78 dB at wavelength 1.55 μm. It is believed that the proposed PCF polarization filter will be very useful in laser and optical communication systems.
|
Received: 09 October 2019
Revised: 13 November 2019
Published: 05 March 2020
|
PACS:
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875238 and 61935007). |
Corresponding Authors:
Jinhui Yuan
E-mail: yuanjinhui81@bupt.edu.cn
|
Cite this article:
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀) Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect 2020 Chin. Phys. B 29 034208
|
[1] |
Kim S and Kee C 2009 Opt. Express 17 15885
|
[2] |
Aliramezani M and Nejad S 2010 Opt. Laser Technol. 42 1209
|
[3] |
Fujisawa T, Saitoh K, Wada K and Koshiba M 2006 Opt. Express 14 893
|
[4] |
Reeves W, Knight J, Russell P and Roberts P 2002 Opt. Express 10 609
|
[5] |
Broderick N, Monro T, Bennett P and Richardson D 1999 Opt. Lett. 24 1395
|
[6] |
Yang T Y, Wang E L, Jiang H M, Hu Z J and Xie K 2015 Opt. Express 23 8329
|
[7] |
Ademgil H and Haxha S 2008 J. Lightwave Technol. 26 441
|
[8] |
Abdelaziz I, AbdelMalek F, Haxha S, Ademgil H and Bouchriha H 2013 J. Lightwave Technol. 31 343
|
[9] |
Lu S, Li W, Guo H and Lu M 2011 Appl. Opt. 50 5798
|
[10] |
Otto 1968 Z. Phys. A 216 398
|
[11] |
Jiang L H, Zheng Y, Yang J J, Hou L T, Li Z H and Zhao X T 2017 Plasmon 12 411
|
[12] |
Chen H L, Li S G, Ma M J, Liu Y C, Shi M, Liu Q and Cheng T L 2016 J. Light. Technol. 34 4972
|
[13] |
Wang Y, Huang Q, Zhu W J, Yang M H and Lewis E 2018 Opt. Express 26 1910
|
[14] |
Wu T S, Shao Y, Wang Y, Cao S Q, Cao W P, Zhang F, Liao C R, He J, Huang Y J, Hou M X and Wang Y P 2017 Opt. Express 25 20313
|
[15] |
Zhou X, Li S G, Cheng T L and An G W 2018 Opt. Quantum Electron. 50 157
|
[16] |
Liu C, Wang L Y, Yang L, Wang F M, Xu C H, Lv J W, Fu G F, Li X L and Liu Q 2019 Phys. Lett. A 383 3200
|
[17] |
Fan Z K, Fang S B, Li S G and Wei Z Y 2019 Chin. Phys. B 28 094209
|
[18] |
Wang D D, Mu C L, Kong D P and Guo C Y 2019 Chin. Phys. B 28 118701
|
[19] |
Zhang X, Wang R, Cox F, Kuhlmey B and Large M 2007 Opt. Express 15 16270
|
[20] |
Lee H W, Schmidt M A, Tyagi H, Sempere and Prill L 2008 Appl. Phys. Lett. 93 111102
|
[21] |
Guo Y, Li J S, Li S G, Zhang S H and Liu Y D 2018 Appl. Opt. 57 8016
|
[22] |
Chang M, Li B X, Chen N, Lu X L, Zhang X D and Xu J 2019 IEEE Photon. J. 11 7202312
|
[23] |
Wang J S, Pei L, Wng S J, Wu L Y, Li J and Ning T G 2018 Appl. Opt. 57 3847
|
[24] |
Zhang Z J, Tsuji Y and Eguchi M 2014 J. Lightwave Technol. 32 4558
|
[25] |
Xue J R, Li S G, Xiao Y Z, Qin W, Xin X J and Zhu X P 2013 Opt. Express 21 13733
|
[26] |
Liu Q, Li S G, Li H, Zi J C, Zhang W, Fan Z K, An G W and Bao Y J 2015 Plasmon. 10 931
|
[27] |
Li B Y, Li M Q, Peng L, Zhou G Y, Hou Z Y and Xia C M 2017 IEEE Photon. J. 9 5700209
|
[28] |
Wang X Y, Li S G, Liu Q and Fan Z K 2018 Optik 156 463
|
[29] |
Heikal A, Hussain F, Hameed M and Obayya S 2015 J. Lightwave Technol. 33 2868
|
[30] |
Islam M, Sultana J, Rifat A, Dinoviser A, Ng B, Ebendorff-Heideprien H and Abbott D 2018 Opt. Express 26 30347
|
[31] |
Liu Q, Li S G and Chen H L 2019 IEEE Photon. J. 7 2700210
|
[32] |
Qu Y W, Yuan J H, Zhou X, Li F, Mei C, Yan B B, Wu Q, Wang K R Sang X Z, Long K P and Yu C X 2019 Opt. Commun. 452 1
|
[33] |
Feng X, Du H, Li S G, Zhang Y N, Liu Q and Guo X Y 2017 Opt. Quant. Electron. 49 235
|
[34] |
Zi J C, Li S G, An G W and Fan Z K 2016 Opt. Commun. 363 80
|
[35] |
Xu Z L, Li X Y, Ling W W, Liu P and Zhang Z Y 2015 Opt. Commun. 354 314
|
[36] |
An G W, Li S G, Zhang W, Fan Z K and Bao Y J 2014 Opt. Commun. 331 316
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|