Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034205    DOI: 10.1088/1674-1056/ab683b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range

Jin-Rong Wang(王锦荣)1, Qing-Wei Wang(王庆伟)1, Long Tian(田龙)1,2, Jing Su(苏静)1,2, Yao-Hui Zheng(郑耀辉)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We report a low-noise, high-signal-to-noise-ratio (SNR) balanced homodyne detector based on the standard transimpedance amplifier circuit and the inductance and capacitance combination for the measurement of the bright squeezed state in the range from 1 kHz to 100 kHz. A capacitance is mounted at the input end of the AC branch to prevent the DC photocurrent from entering the AC branch and avoid AC branch saturation. By adding a switch at the DC branch, the DC branch can be flexibly turned on and off on different occasions. When the switch is on, the DC output provides a monitor signal for laser beam alignment. When the switch is off, the electronic noise of the AC branch is greatly reduced at audio-frequency band due to immunity to the impedance of the DC branch, hence the SNR of the AC branch is significantly improved. As a result, the electronic noise of the AC branch is close to -125 dBm, and the maximum SNR of the AC branch is 48 dB with the incident power of 8 mW in the range from 1 kHz to 100 kHz. The developed photodetector paves a path for measuring the bright squeezed state at audio-frequency band.
Keywords:  quantum optics      photodetector      low-noise      audio band  
Received:  04 October 2019      Revised:  05 December 2019      Published:  05 March 2020
PACS:  42.50.-p (Quantum optics)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11654002, 61575114, 11874250, and 11804207), the National Key Research and Development Program of China (Grant No. 2016YFA0301401), the Program for Sanjin Scholar of Shanxi Province, China, the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and Key Research and Development Projects of Shanxi Province, China (Grant No. 201903D111001).
Corresponding Authors:  Yao-Hui Zheng     E-mail:  yhzheng@sxu.edu.cn

Cite this article: 

Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉) A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range 2020 Chin. Phys. B 29 034205

[1] Hou L L, Xue J Z, Sui Y X and Wang S 2019 Chin. Phys. B 28 094217
[2] Yang W H, Jin X L, Yu X D, Zheng Y H and Peng K C 2017 Opt. Express 25 24262
[3] Yu X D, Li W, Zhu S Y and Zhang J 2016 Chin. Phys. B 25 020304
[4] Du J S, Feng J X, Ma Y Y, Li Y J and Zhang K S 2018 Acta Sin. Quantum. Opt. 24 14
[5] Feng Y Y, Shi R H and Guo Y 2018 Chin. Phys. B 27 020302
[6] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121
[7] The L I G O Scientific Collaboration 2011 Nat. Phys. 7 962
[8] Cella G and Giazotto A 2011 Rev. Sci. Instrum. 82 101101
[9] Abbott B P 2016 Phys. Rev. Lett. 116 061102
[10] Abbott B P 2017 Phys. Rev. Lett. 118 221101
[11] Polzik E S, Carri J and Kimble H J 1992 Phys. Rev. Lett. 68 3020
[12] Polzik E S, Carri J and Kimble H J 1992 Appl. Phys. B 55 279
[13] Li Y Q, Lynam P, Xiao M and Edwards P J 1997 Phys. Rev. Lett. 78 3105
[14] Li Y Q, Guzun D and Xiao M 1999 Phys. Rev. Lett. 82 5225
[15] Ralph T C 1999 Phys. Rev. A 61 010303
[16] Madsen L D, Usenko V C, Lassen M, Filip Radim and Andersen U L 2012 Nat. Commun. 3 1083
[17] Stefszky M S, Mow Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K and McClelland 2012 Class. Quantum. Grav. 29 145015
[18] Appel J, Hoffman D, Figueroa E and Lvovsky A I 2007 Phys. Rev. A 75 035802
[19] Liu Q, Feng J X, Li H, Jiao Y C and Zhang K S 2012 Chin. Phys. B 21 104204
[20] Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F and Zhang T C 2017 Chin. Phys. B 26 124206
[21] Zheng Y H, Wu Z Q, Huo M R and Zhou H J 2013 Chin. Phys. B 22 094206
[22] Lu D M and Fan H Y 2014 Chin. Phys. B 23 020302
[23] Masalov A V, Kuzhamuratov A and Lvovsky A I 2017 Rev. Sci. Instrum. 88 113109
[24] Qin J L, Yan Z H, Huo M R, Jia X J and Peng K C 2016 Chin. Opt. Lett. 14 122701
[25] Zhou H J, Yang W H, Li Z X, Li X F and Zheng Y H 2014 Rev. Sci. Instrum. 85 013111
[26] Huang D, Fang J, Wang C, Huang P and Zeng G H 2013 Chin. Phys. Lett. 30 114209
[27] Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z and Peng K C 2015 Opt. Express 23 23859
[28] Wang S F, Xiang X, Zhou C H, Zhai Y W, Quan R N, Wang M M, Hou F Y, Zhang S G, Dong R F and Liu T 2017 Rev. Sci. Instrum. 88 013107
[29] Zhou H J, Wang W Z, Chen C Y and Zheng Y H 2015 IEEE Sensors. J. 15 2101
[30] Wang X Y, Bai Z L, Du P Y, Li Y M and Peng K C 2012 Chin. Phys. Lett. 29 124202
[31] Valbruch H 2008 Squeezed Light for Gravitationalwave Astronomy (Ph.D. Dissertation) (Hannover: the Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universitat Hannover) (in Germany)
[32] Wen X, Han Y S, Liu J Y, He J and Wang J M 2017 Opt. Express. 25 020737
[33] Kay A 1988 Photodiode Amplifier Noise Operational Amplifier Noise: Tech. Tips For Analyzing Reducing Noise (1st Edn.)
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[4] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[5] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[6] An Yb-fiber frequency comb phase-locked to microwave standard and optical reference
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(3): 030601.
[7] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[8] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[9] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[10] Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions
Zhi-Ming Bai(白智明), Ying-Hua Zhang(张英华), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳). Chin. Phys. B, 2020, 29(12): 128202.
[11] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[12] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[13] Rectifying characteristics and solar-blind photoresponse in β-Ga2O3/ZnO heterojunctions
Xiao-Fei Ma(马晓菲), Yuan-Qi Huang(黄元琪), Yu-Song Zhi(支钰崧), Xia Wang(王霞), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(8): 088503.
[14] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[15] Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同). Chin. Phys. B, 2019, 28(4): 048502.
No Suggested Reading articles found!