Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020304    DOI: 10.1088/1674-1056/ab65b6
GENERAL Prev   Next  

Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system

Mohamed Amazioug1,2, Larbi Jebli3, Mostafa Nassik3, Nabil Habiballah3,4,5
1 Department of Physics, Ecole Normale Supérieure(ENS), Mohammed V University in Rabat, Morocco;
2 LPHE-MS, Department of Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco;
3 EPTHE, Department of Physics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco;
4 Faculty of Applied Sciences, Ibn Zohr University, Ait-Melloul, Morocco;
5 Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy
Abstract  We investigate the generation of quantum correlations between mechanical modes and optical modes in an optomechanical system, using the rotating wave approximation. The system is composed of two Fabry-Pérot cavities separated in space; each of the two cavities has a movable end-mirror. Our aim is the evaluation of entanglement between mechanical modes and optical modes, generated by correlations transfer from the squeezed light to the system, using Gaussian intrinsic entanglement as a witness of entanglement in continuous variables Gaussian states, and the quantification of the degree of mixedness of the Gaussian states using the purity. Then, we quantify nonclassical correlations between mechanical modes and optical modes even beyond entanglement by considering Gaussian geometric discord via the Hellinger distance. Indeed, entanglement, mixdness, and quantum discord are analyzed as a function of the parameters characterizing the system (thermal bath temperature, squeezing parameter, and optomechanical cooperativity). We find that, under thermal effect, when entanglement vanishes, purity and quantum discord remain nonzero. Remarkably, the Gaussian Hellinger discord is more robust than entanglement. The effects of the other parameters are discussed in detail.
Keywords:  cavity optomechanics      quantum correlations      Gaussian intrinsic entanglement      purity      Gaussian Hellinger discord      Gaussian geometric discord  
Received:  05 October 2019      Revised:  15 December 2019      Published:  05 February 2020
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Corresponding Authors:  Mohamed Amazioug     E-mail:  amazioug@gmail.com

Cite this article: 

Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system 2020 Chin. Phys. B 29 020304

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 553
[3] Bell J S 1964 Physics 1 195
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Scarani V, Lblisdir S, Gisin N and Acin A 2005 Rev. Mod. Phys. 77 1225
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Shi H and Bhattacharya M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 153001.
[9] Bowen W P and Milburn G J 2016 Quantum Optomechanics
[10] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[11] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[12] Sete E A, Eleuch H and Ooi C H R 2014 J. Opt. Soc. Am. B 31 2821
[13] Suciu S and Isar A 2015 AIP Conference Proceedings 1694 020013
[14] Amazioug M, Nassik M and Habiballah N 2018 Eur. Phys. J. D 72 171
[15] Amazioug M, Nassik M and Habiballah N 2018 Optik-Int. J. Light Elect. Opt. 158 1186
[16] Amazioug M, Nassik M and Habiballah N 2018 Int. J. Quantum Inform. 16 1850043
[17] Amazioug M, Nassik M and Habiballah N 2019 Chin. J. Phys. 58 1
[18] Zurek W H 2003 Rev. Mod. Phys. 75 715
[19] AlQasimi A and James D F V 2008 Phys. Rev. A 77 12117
[20] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[21] Yu T and Eberly J H 2006 Opt. Commun. 264 393
[22] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[23] Yu T and Eberly J H 2009 Science 323 598
[24] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[25] Mista L Jr and Tatham R 2016 Phys. Rev. Lett. 117 240505
[26] Paris M G A, Illuminati F, Serafini A and De Siena S 2003 Phys. Rev. A 68 012314
[27] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. Lett. 92 087901
[28] Marian P and Marian T A 2015 J. Phys. A: Math. Theor. 48 115301
[29] Tian L and Wang H 2010 Phys. Rev. A 82 053806
[30] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[31] Pinard M, Dantan A, Vitali D, Arcizet O, Briant T and Heidmann A 2005 Europhys. Lett. 72 747
[32] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
[33] Gardiner C W and Zoller P 2000 Quantum Noise p. 71
[34] Gardiner C W 1986 Phys. Rev. Lett. 56 1917
[35] Sete E A, Eleuch H and Das S 2011 Phys. Rev. A 84 053817
[36] Wang Y D, Chesi S and Clerk A A 2015 Phys. Rev. A 91 013807
[37] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603
[38] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[39] Vitali D, Gigan S, Ferreira A, B? hm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[40] Parks P C and Hahn V 1993 Stability Theory
[41] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
[42] El Qars J, Daoud M and Ahl Laamara R 2018 J. Mod. Opt. 65 1584
[1] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[2] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[3] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[4] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[5] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
[6] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[7] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[8] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[9] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[10] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[11] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
[12] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[13] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[14] Validation of the Wiedemann-Franz law in a granular s-wave superconductor in the nanometer scale
A Yousefvand, H Salehi, M Zargar Shoushtari. Chin. Phys. B, 2017, 26(3): 037401.
[15] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
No Suggested Reading articles found!