Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026103    DOI: 10.1088/1674-1056/ab6585
Special Issue: SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
SPECIAL TOPIC—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles

Zhi-Sen Jiang(蒋之森)1, Shao-Feng Li(李少锋)2, Zheng-Rui Xu(许正瑞)3, Dennis Nordlund2, Hendrik Ohldag2, Piero Pianetta2, Jun-Sik Lee2, Feng Lin(林锋)3, Yi-Jin Liu(刘宜晋)2
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
3 Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
Abstract  The hierarchical structure of the composite cathodes brings in significant chemical complexity related to the interfaces, such as cathode electrolyte interphase. These interfaces account for only a small fraction of the volume and mass, they could, however, have profound impacts on the cell-level electrochemistry. As the investigation of these interfaces becomes a crucial topic in the battery research, there is a need to properly study the surface chemistry, particularly to eliminate the biased, incomplete characterization provided by techniques that assume the homogeneous surface chemistry. Herein, we utilize nano-resolution spatially-resolved x-ray spectroscopic tools to probe the heterogeneity of the surface chemistry on LiNi0.8Mn0.1Co0.1O2 layered cathode secondary particles. Informed by the nano-resolution mapping of the Ni valance state, which serves as a measurement of the local surface chemistry, we construct a conceptual model to elucidate the electrochemical consequence of the inhomogeneous local impedance over the particle surface. Going beyond the implication in battery science, our work highlights a balance between the high-resolution probing the local chemistry and the statistical representativeness, which is particularly vital in the study of the highly complex material systems.
Keywords:  Ni-rich cathode      x-ray nanoprobe      redox heterogeneity      surface chemistry  
Received:  16 November 2019      Revised:  20 December 2019      Published:  05 February 2020
PACS:  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  78.70.Dm (X-ray absorption spectra)  
  87.59.-e (X-ray imaging)  
  82.45.Fk (Electrodes)  
Fund: Project supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515 and National Science Foundation under Grant No. DMR-1832613.
Corresponding Authors:  Jun-Sik Lee, Feng Lin, Yi-Jin Liu     E-mail:  jslee@slac.stanford.edu;fenglin@vt.edu;liuyijin@slac.stanford.edu

Cite this article: 

Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋) Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles 2020 Chin. Phys. B 29 026103

[1] Xu J, Lin F, Doeff M M and Tong W 2017 J. Mater. Chem. A 5 874
[2] Yang Y, Xu R, Zhang K, Lee S, Mu L, Liu P, Waters C K, Spence S, Xu Z, Wei C, Kautz D J, Yuan Q, Dong Y, Yu Y, Xiao X, Lee H, Pianetta P, Cloetens P, Lee J, Zhao K, Lin F and Liu Y 2019 Adv. Energy Mater. 9 1900674
[3] Wei C, Zhang Y, Lee S J, Mu L, Liu J, Wang C, Yang Y, Doeff M, Pianetta P, Nordlund D, Du X W, Tian Y, Zhao K, Lee J S, Lin F and Liu Y 2018 J. Mater. Chem. A 6 23055
[4] Mao Y, Wang X, Xia S, Zhang K, Wei C, Bak S, Shadike Z, Liu X, Yang Y, Xu R, Pianetta P, Ermon S, Stavitski E, Zhao K, Xu Z, Lin F, Yang X, Hu E and Liu Y 2019 Adv. Funct. Mater. 29 1900247
[5] Mu L, Lin R, Xu R, Han L, Xia S, Sokaras D, Steiner J D, Weng T C, Nordlund D, Doeff M M, Liu Y, Zhao K, Xin H L and Lin F 2018 Nano Lett. 18 3241
[6] Lin F, Nordlund D, Li Y, Quan M K, Cheng L, Weng T C, Liu Y, Xin H L and Doeff M M 2016 Nat. Energy 1 15004
[7] Yan P, Nie A, Zheng J, Zhou Y, Lu D, Zhang X, Xu R, Belharouak I, Zu X, Xiao J, Amine K, Liu J, Gao F, Shahbazian-Yassar R, Zhang J G and Wang C M 2015 Nano Lett. 15 514
[8] Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Hyun J, Yang W and Kang K 2014 Adv. Energy Mater. 4 1300787
[9] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L and Doeff M M 2014 Nat. Commun. 5 3529
[10] Mu L, Feng X, Kou R, Zhang Y, Guo H, Tian C, Sun C J, Du X W, Nordlund D, Xin H L and Lin F 2018 Adv. Energy Mater. 8 1801975
[11] Wolf M, May B M and Cabana J 2017 Chem. Mater. 29 3347
[12] Lin F, Liu Y, Yu X, Cheng L, Singer A, Shpyrko O G, Xin H L, Tamura N, Tian C, Weng T C, Yang X Q, Meng Y S, Nordlund D, Yang W and Doeff M M 2017 Chem. Rev. 117 13123
[13] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L and Doeff M M 2014 Nat. Commun. 5 3529
[14] Mu L, Rahman M M, Zhang Y, Feng X, Du X W, Nordlund D and Lin F 2018 J. Mater. Chem. A 6 2758
[15] Meirer F, Cabana J, Liu Y, Mehta A, Andrews J C and Pianetta P 2011 J. Synchrotron Radiat. 18 773
[16] Liu Y, Meirer F, Williams P A, Wang J, Andrews J C and Pianetta P 2012 J. Synchrotron Radiat. 19 281
[17] Tian C, Nordlund D, Xin H L, Xu Y, Liu Y, Sokaras D, Lin F and Doeff M M 2018 J. Electrochem. Soc. 165 A696
[1] Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals
Pi Xiao-Dong, Wang Rong, Yang De-Ren. Chin. Phys. B, 2014, 23(7): 076102.
[2] Numerical simulation of dispersion generated by a 180° turn in a microchannel
Yao Zhao-Hui, G. L. Yoder, C. T. Culbertson, J. M. Ramsey. Chin. Phys. B, 2002, 11(3): 226-232.
No Suggested Reading articles found!