Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020302    DOI: 10.1088/1674-1056/ab6555
GENERAL Prev   Next  

Unified approach to various quantum Rabi models witharbitrary parameters

Xiao-Fei Dong(董晓菲)1, You-Fei Xie(谢幼飞)1, Qing-Hu Chen(陈庆虎)1,2
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent states. The solutions to all these models including the anisotropy and the nonlinear Stark coupling are then obtained in an unified way. The essential characteristics such as the possible first-order phase transition can be detected analytically. This approach can be easily applied to the recent experiments with various tunable parameters without much additional effort, so it should be very helpful to the analysis of the experimental data.
Keywords:  exact solutions      quantum Rabi models      circuit QED      anisotropy  
Received:  27 November 2019      Published:  05 February 2020
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Ik (Integrable systems)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834005 and 11674285).
Corresponding Authors:  Qing-Hu Chen     E-mail:  qhchen@zju.edu.cn

Cite this article: 

Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎) Unified approach to various quantum Rabi models witharbitrary parameters 2020 Chin. Phys. B 29 020302

[1] Rabi I I 1937 Phys. Rev. 51 652
[2] Jaynes E T and Cummings F W 1963 IEEE Proc. 51 89
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4] Orszag M 2007 Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (Science Publish)
[5] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Humer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[6] Forn-D Píaz, Lisenfeld J, Marcos D, Garca-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[7] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2016 Nat. Phys. 13 44
[8] Forn-D Píaz, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2016 Nat. Phys. 13 39
[9] Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[10] Braak D 2011 Phys. Rev. Lett. 107 100401
[11] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[12] He S, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837
[13] He S, Zhao Y and Chen Q H 2014 Phys. Rev. A 90 053848
[14] Zhong H H, Xie Q T, Batchelor M and Lee C H 2013 J. Phys. A 46 415302
[15] Maciejewski A J, Przybylska M and Stachowiak T 2014 Phys. Lett. A 378 3445
[16] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[17] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[18] Ying Z J, Liu M X, Luo H G, Lin H Q and You J Q 2015 Phys. Rev. A 92 053823
[19] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[20] Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601
[21] Braak D, Chen Q H, Batchelor M and Solano E 2016 J. Phys. A: Math. Gen. 49 300301
[22] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
[23] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 25005
[24] Yu Y X, Ye J and Liu W M 2013 Sci. Rep. 3 3476
[25] Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
[26] Tomka M, Araby O. E, Pletyukhov M and Gritsev V 2014 Phys. Rev. A 90 063839
[27] Erlingsson S I, Egues J C and Loss D 2010 Phys. Rev. B 82 155456
[28] Schiroa M, Bordyuh M, Otu ztop B and Tureci H E 2012 Phys. Rev. Lett. 109 053601
[29] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[30] Grimsmo A L and Parkins S 2013 Phys. Rev. A 87 033814
[31] Grimsmo A L and Parkins S 2014 Phys. Rev. A 89 033802
[32] Eckle H P and Johannesson H 2017 J. Phys. A: Math. Theor. 50 294004
[33] Xie Y F, Duan L W and Chen Q H 2019 J. Phys. A: Math. Theor. 52 245304
[34] Xie Y F and Chen Q H 2019 Commun. Theor. Phys. 71 623
[35] Cong L, Felicetti S, Casanova J, Lamata L, Solano E and Arrazola I 2019 arXiv:1908.07358
[36] Zhang Z Q, Lee C H, Kumar R, Arnold K J, Masson S J, Grimsmo A L, Parkins A S and Barrett M D 2018 Phys. Rev. A 97 043858
[37] Xie Q T, Zhong H H, Batchelor M T and Lee C H 2016 J. Phys. A: Math. Theor. 50 113001
[38] Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
[39] Feranchuk I D, Komarov L I and Ulyanenkov A P 1996 J. Phys. A 29 4035
[40] Irish E K 2007 Phys. Rev. Lett. 99 173601
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[3] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[4] Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛). Chin. Phys. B, 2021, 30(2): 027401.
[5] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[8] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[9] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[10] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[11] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[12] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[13] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[14] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[15] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
No Suggested Reading articles found!