Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 024203    DOI: 10.1088/1674-1056/ab5ef8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave

Tong Li(李彤)1, Fang-Rong Hu(胡放荣)1, Yi-Xian Qian(钱义先)2, Jing Xiao(肖靖)3, Long-Hui Zhang(张隆辉)1, Wen-Tao Zhang(张文涛)1, Jia-Guang Han(韩家广)1
1 Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China;
2 Key Laboratory of Optical Information Detecting and Display Technology, Zhejiang Normal University, Jinhua 321004, China;
3 Air Force Logistics College, Xuzhou 221000, China
Abstract  The asymmetric transmission (AT) and polarization conversion of terahertz (THz) wave play a vital role in future THz communication, spectrum, and information processing. Generally, it is very difficult and complicated to actively control the AT of electromagnetic (EM) wave by using traditional devices. Here, we theoretically demonstrate a stereo-metamaterial (stereo-MM) consisting of a layer of metal structure and a layer of phase transition structure with a polyimide spacer in between. The performance of the device is simulated by using the finite-integration-technology (FIT). The results show that the AT and polarization conversion of linearly polarized wave can be dynamically controlled in a range of 1.0 THz-1.6 THz when the conductivity σ of vanadium dioxide (VO2) is changed under the external stimulation. This study provides an example of actively controlling of the AT and polarization conversion of the EM wave.
Keywords:  stereo-metamaterial (stereo-MM)      asymmetric transmission (AT)      polarization conversion      vanadium dioxide (VO2)  
Received:  18 July 2019      Revised:  14 October 2019      Published:  05 February 2020
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  84.30.Vn (Filters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574059 and 61965005), the National Technology Major Special Project, China (Grant No. 2017ZX02101007-003), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFAA050043), and the Guangxi Special Expert Program and Innovation Project of Guangxi Graduate Education, China (Grant Nos. 2019YCXS088 and 2019YCXS094), and the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument, China (Grant No. YQ16101).
Corresponding Authors:  Fang-Rong Hu     E-mail:  hufangrong@sina.com

Cite this article: 

Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广) Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave 2020 Chin. Phys. B 29 024203

[1] Brucherseifer M, Nagel M, Haring Bolivar P, Kurz H, Bosserhoff A and Büttner R 2000 Appl. Phys. Lett. 77 4049
[2] Zhang L L, Zhong H, Deng C, Zhang C L and Zhao Y J 2011 Opt. Commun. 284 4356
[3] Chen H L, Bian H T, Li J B, Guo X M, Wen X W and Zheng J R 2013 J. Phys. Chem. B 117 15614
[4] Wiesauer K and Christian Jördens 2013 J. Infrared Milli Terahz Waves 34 663
[5] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popvić M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579
[6] Wang H, Wu H and Zhou J Q 2018 J. Quant. Spectrosc. & Radiat. Transfer 206 254
[7] Tamagnone M, Moldovan C, Poumirol J M, Kuzmenko A B, Ionescu A M, Mosig J R and Perruisseau J 2016 Nat. Commun. 7 11216
[8] He X Y, Chen Q, Li L C, Yang C, Li B, Zhou B H and Tang C X 2011 Chin. Phys. Lett. 28 057701
[9] Chen L, Wei Y M, Zang X F, Zhu Y M and Zhuang S L 2016 Sci. Rep. 6 22027
[10] Liu C J, Huang Y Y, Yao Z H, Yu L L, Jin Y P and Xu X L 2018 Europhys. Lett. 121 44004
[11] Wang J F, Qu S B, Xu Z, Xia S, Ma H, Wang Q, Yang Y M and Wu X 2010 Chin. Phys. Lett. 27 034104
[12] Zhang X J, Wu X and Xu Y D 2017 Chin. Phys. Lett. 34 084102
[13] Hu F R, Xu X, Li P, Xu X L and Wang Y E 2017 Chin. Phys. B 26 074219
[14] Liu J Q, Chen J, Wuan D Y, Zhou Y X, Chen Z H and Wang L L 2013 Chin. Phys. Lett. 30 097801
[15] Xia W 2013 Chin. Phys. Lett. 30 077308
[16] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[17] Zang X F, Liu S J, Gong H H, Wang Y J and Zhu Y M 2018 J. Opt. Soc. Am. B 35 950
[18] Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
[19] Liu N, Liu H, Zhu S N and Giessen H 2009 Nat. Photon. 3 157
[20] Kim M, Yao K, Yoon G, Kim I, Liu Y and Rho J 2017 Adv. Opt. Mater. 5 1700600
[21] Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Express 19 14290
[22] Zhou X, Li M H, Wang H B, Wang C, Zhai X M and Dong J F 2017 J. Electromagn. Waves Applications 31 828
[23] Li Z C, Chen S Q, Tang C C, Liu W W, Cheng H, Liu Z, Li J X, Yu P, Xie B Y, Liu Z C, Li J J and Tian J G 2014 Appl. Phys. Lett. 105 201103
[24] Tang D F, Wang C, Pan W K, Li M H and Dong J F 2017 Opt. Express 25 11329
[25] Bai Y, Chen Y Y, Zhang Y Y, Wang Y K, Aba T, Li H, Wang L and Zhang Z Y 2018 J. Phys.: Condebsed Matter 30 114001
[26] Liu D J, Xiao Z Y, Ma X L and Wang Z H 2015 Appl. Phys. Express 8 52001
[27] Plum E, Fedotov V A and Zheludev N I 2009 Appl. Phys. Lett. 94 131901
[28] Cheng Z Z and Cheng Y Z 2019 Opt. Commun. 435 178
[29] Hashemi M R, Cakmakyapan S and Jarrahi M 2017 Rep. Prog. Phys. 80 094501
[30] Nakajima M, Takubo N, Hiroi Z, Ueda Y and Suemoto T 2008 Appl. Phys. Lett. 92 011907
[31] Shi Q W, Huang W X, Zhang Y X, Yan J Z, Zhang Y B, Mao M, Zhang Y and Tu M J 2011 ACS Appl. Mater. Interfaces 3 3523
[32] Han C R, Parrott E P J, Humbert G, Crunteanu A and Pickwell-macpherson E 2017 Sci. Rep. 7 12725
[33] Ruzmetov D, Gopalakrishnan G, Ko C, Narayanamurti V and Ramanathan S 2010 J. Appl. Phys. 107 114516
[34] Liu M K, Hwang H, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345
[35] Wan C H, Horak E H, King J, Salman J, Zhang Z, Zhou Y, Roney P, Gundlach B, Ramanathan S, Goldsmith R H and Kats M A 2018 ACS Photon. 5 2688
[36] Zhang C H, Zhou G H, Wu J B, Tang Y H, Wen Q Y, Li S X, Han J G, Jin B B, Chen J and Wu P H 2019 Phys. Rev. Appl. 11 054016
[37] Karaoglan-Bebek G, Hoque M N F, Holtz M, Fan Z and Bernussi A A 2014 Appl. Phys. Lett. 105 201902
[38] West K G, Lu J W, Yu J N, Kirkwood D, Chen W, Pei Y H, Claassen J and Wolf S A 2008 J. Vac. Sci. Technol. A 26 133
[39] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111
[40] Wang D C, Zhang L C, Gu Y H, Mehmood M Q, Gong Y D, Srivastava A, Jian L K, Venkatesan T, Qiu C W and Hong M H 2015 Sci. Rep. 5 15020
[41] Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R S 2011 Opt. Lett. 36 945
[42] Wang S X, Kang L and Werner D H 2018 Sci. Rep. 8 189
[43] Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 53811
[44] Li J H, Guo H J, Xu T, Chen L, Hang Z H, Zhou L and Chen S Q 2019 Phys. Rev. Appl. 11 044042
[45] Cheng Y Z, Fan J P, Luo H, Feng N X, Mao X S and Gong R Z 2019 Opt. Mater. Express 9 1365
[46] Huang X J, Yang D, Yu S Q, Guo L, Guo L Y and Yang H L 2014 Appl. Phys. B 117 633
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[3] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[4] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[5] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[6] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[7] A broadband cross-polarization conversion anisotropic metasurface based on multiple plasmon resonances
M Ismail Khan, Farooq A Tahir. Chin. Phys. B, 2018, 27(1): 014101.
[8] Optical properties of a three-dimensional chiral metamaterial
Juan-Juan Guo(郭娟娟), Mao-Sheng Wang(汪茂胜), Wan-Xia Huang(黄万霞). Chin. Phys. B, 2017, 26(12): 124211.
[9] Broadband perfect polarization conversion metasurfaces
Chen Hong-Ya, Wang Jia-Fu, Ma Hua, Qu Shao-Bo, Zhang Jie-Qiu, Xu Zhuo, Zhang An-Xue. Chin. Phys. B, 2015, 24(1): 014201.
No Suggested Reading articles found!