Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010303    DOI: 10.1088/1674-1056/ab5938
GENERAL Prev   Next  

Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field

Yueming Wang(王月明)1,3, Zhen Jin(靳祯)2
1 School of Physics and Electronic Engineer, Shanxi University, Taiyuan 030006, China;
2 Complex Systems Research Center, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Motivated by the fascinating progresses in the cold atom experiments and theories, especially the artificial gauge field induced spin-orbit coupling of neutral atoms, we present a novel dispersion of neutral atoms carrying a non-vanishing magnetic moment in a special gauge field, an external electric field of dark-soliton shaped profile. By means of WKB approximation, we obtain discrete quantized landau-like energy levels, which is instructive for the quantum Hall effect of neutral particles. The observability of the results is also discussed.
Keywords:  Landau level      cold atom      Rashba spin-orbit coupling  
Received:  08 August 2019      Revised:  23 October 2019      Published:  05 January 2020
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  11.30.Pb (Supersymmetry)  
  73.43.-f (Quantum Hall effects)  
Fund: Project supported by China Scholarship Council, Shanxi Province Natural Science Foundation, China (Grant No. 201601D011009), the Enterprise Project (Grant No. 01110116100051), Shanxi 1331KSC and 111 Project (Grant No. D18001), and the National Natural Science Foundation of China (Grant Nos. 11404415 and 61873154).
Corresponding Authors:  Yueming Wang     E-mail:  wang_ym@sxu.edu.cn

Cite this article: 

Yueming Wang(王月明), Zhen Jin(靳祯) Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field 2020 Chin. Phys. B 29 010303

[1] Prange R E and Girvin S M (Eds.) 1990 The Quantum Hall Effect (New York: Springerverlag)
[2] Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319
[3] Anandan J 1982 Phys. Rev. Lett. 48 1660
[4] Cimmino A, Opat G I, Klein A G, Kaiser H, Werner S A, Arif M and Clothier R 1989 Phys. Rev. Lett. 63 380
[5] Sangster K, Hinds E A, Barnett S M and Riis E 1993 Phys. Rev. Lett. 71 3641
[6] Ericsson M and Erik S 2001 Phys. Rev. A 65 013607
[7] Furtado C, Nascimento J R and Ribeiro L R 2006 Phys. Lett. A 358 336
[8] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[9] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[10] Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[11] Huang L G, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[12] Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J and Pan J W 2016 Science 354 83
[13] Galitski V, Juzeliunas G and Spielman I B 2019 Physics Today 72 38
[14] Dalibard J, Gerbier F, Juzeliunas G and Patrik Ö 2011 Rev. Mod. Phys. 83 1523
[15] Zhu S L, Wang B G and Duan L M 2007 Phys. Rev. Lett. 98 260402
[16] Anglin J R and Ketterle W 2002 Nature 416 211
[17] Bloch I 2005 Nat. Phys. 1 23
[18] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[19] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[20] Banerjee S, Hans Ågren and Balatsky A V 2016 Phys. Rev. B 93 235134
[21] Haar D T 1960 Problems in Quantum Mechanics (London: Infosearch Limited)
[22] Trypogeorgos D, Harte T, Bonnin A and Foot C 2013 Opt. Express 21 24837
[1] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[2] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[3] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[4] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[5] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[6] Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock
Xi Zhang(张茜), Fei Yang(杨飞), Zi-Tong Feng(冯子桐), Jie-Jun Zhao(赵洁珺), Fang Wei(魏芳), Hai-Wen Cai(蔡海文), Rong-Hui Qu(瞿荣辉). Chin. Phys. B, 2019, 28(7): 074209.
[7] Behavior of fractional quantum Hall states in LLL and 1LL with in-plane magnetic field and Landau level mixing: A numerical investigation
Lin-Peng Yang(杨林鹏), Qi Li(李骐), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2018, 27(8): 087306.
[8] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
[9] Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM
Qiyu Wang(王启宇), Jinyang Feng(冯金扬), Shaokai Wang(王少凯), Wei Zhuang(庄伟), Yang Zhao(赵阳), Lishuang Mou(牟丽爽), Shuqing Wu(吴书清). Chin. Phys. B, 2018, 27(12): 123701.
[10] Matter wave interference of dilute Bose gases in the critical regime
Xuguang Yue(乐旭广), Shujuan Liu(刘淑娟), Biao Wu(吴飙), Hongwei Xiong(熊宏伟). Chin. Phys. B, 2017, 26(5): 050501.
[11] Photon-assisted electronic and spin transport through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm interferometer
Jiyuan Bai(白继元), Li Li(李立), Zelong He(贺泽龙), Shujiang Ye(叶树江), Shujun Zhao(赵树军), Suihu Dang(党随虎), Weimin Sun(孙伟民). Chin. Phys. B, 2017, 26(11): 117302.
[12] Electric-field-modified Feshbach resonances in ultracold atom-molecule collision
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英). Chin. Phys. B, 2017, 26(1): 013402.
[13] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[14] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[15] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
No Suggested Reading articles found!