Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014701    DOI: 10.1088/1674-1056/ab5782
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Evaporation of saline colloidal droplet and deposition pattern

Hong-Hui Sun(孙弘辉)1,3, Wei-Bin Li(李伟斌)1,3, Wen-Jie Ji(纪文杰)1,2, Guo-Liang Dai(戴国亮)1,3, Yong Huan(郇勇)2,3, Yu-Ren Wang(王育人)1,3, Ding Lan(蓝鼎)1,3
1 National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 State Key Laboratory of Nonlinear Mechanics(LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049 China
Abstract  The dynamic process of the evaporation and the desiccation of sessile saline colloidal droplets, and their final deposition are investigated. During the evaporation, the movement of the colloidal particles shows a strong dependence on the salt concentration and the droplet shape. The final deposition pattern indicates a weakened coffee-ring effect in this mixed droplet system. The microscopic observation reveals that as evaporation proceeds, the particle motion trail is affected by the salt concentration of the droplet boundary. The Marangoni flow, which is induced by surface tension gradient originating from the local evaporative peripheral salt enrichment, suppresses the compensation flow towards the contact line of the droplet. The inhomogeneous density and concentration field induced by evaporation or crystallization can be the major reason for various micro-flows. At last stage, the distribution and crystallization of NaCl are affected by the colloidal particles during the drying of the residual liquid film.
Keywords:  saline droplet      evaporation      deposition pattern      disease diagnosis  
Received:  24 September 2019      Revised:  28 October 2019      Published:  05 January 2020
PACS:  47.55.nb (Capillary and thermocapillary flows)  
  47.55.np (Contact lines)  
  45.70.Qj (Pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472275 and U1738118), the Chinese Academy of Sciences Key Technology Talent Program, and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040301).
Corresponding Authors:  Ding Lan     E-mail:  landing@imech.ac.cn

Cite this article: 

Hong-Hui Sun(孙弘辉), Wei-Bin Li(李伟斌), Wen-Jie Ji(纪文杰), Guo-Liang Dai(戴国亮), Yong Huan(郇勇), Yu-Ren Wang(王育人), Ding Lan(蓝鼎) Evaporation of saline colloidal droplet and deposition pattern 2020 Chin. Phys. B 29 014701

[1] Lubarda V A 2012 Soft Matter 8 10288
[2] Weon B M and Je J H 2013 Phys. Rev. Lett. 110 028303
[3] Nikolov A D, Wasan D T, Chengara A, Koczo K, Policello G A and Kolossvary I 2002 Adv. Colloid Interface 96 325
[4] Nikolov A and Wasan D 2014 Adv. Colloid Interface 206 207
[5] Li W B, Lan D and Wang Y R 2017 Phys. Rev. E 95 042607
[6] Yu Y, Zhu H, Frantz J M, Reding M E, Chan K C and Ozkan H E 2009 Biosyst Eng. 104 324
[7] Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D and Wong G C L 2006 Phys. Rev. Lett. 96 177801
[8] Shatokhina S N, Shabalin V N, Buzoverya M E and Punin V T 2004 Sci. World J. 4 657
[9] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and Witten T A 1997 Nature 389 827
[10] Wu M M, Man X K and Doi M 2018 Langmuir 34 9572
[11] Yunker P J, Still T, Lohr M A and Yodh A G 2011 Nature 476 308
[12] Fischer B J 2002 Langmuir 18 60
[13] Sefiane K 2014 Adv. Colloid Interface 206 372
[14] Yakhno T A, Yakhno V G, Sanin A G, Sanina O A, Pelyushenko A S, Egorova N A, Terentiev I G, Smetanina S V, Korochkina O V and Yashukova E V 2005 IEEE Eng. Med. Biol. 24 96
[15] Rapis E 2002 Tech. Phys. 47 510
[16] Brutin D, Sobac B, Loquet B and Sampol J 2011 J. Fluid Mech. 667 85
[17] Chen G F and Mohamed G J 2010 Eur. Phys. J. E 33 19
[18] Zhang L, Maheshwari S, Chang H C and Zhu Y X 2008 Langmuir 24 3911
[19] Shahidzadeh-Bonn N, Rafai S, Bonn D and Wegdam G 2008 Langmuir 24 8599
[20] Shahidzadeh N, Schut M F L, Desarnaud J, Prat M and Bonn D 2015 Sci. Rep-Uk 5 10335
[21] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and Witten T A 2000 Phys. Rev. E 62 756
[22] Soulie V, Karpitschka S, Lequien F, Prene P, Zemb T, Moehwald H and Riegler H 2015 Phys. Chem. Chem. Phys. 17 22296
[23] Marin A G, Gelderblom H, Lohse D and Snoeijer J H 2011 Phys. Rev. Lett. 107 085502
[24] Picknett R G and Bexon R 1977 J. Colloid Interf Sci. 61 336
[25] Kang K H, Lim H C, Lee H W and Lee S J 2013 Phys. Fluids 25 042001
[26] Sghaier N, Prat M and Ben Nasrallah S 2006 Chem. Eng. J. 122 47
[27] Weast R C 1980 CRC Handbook Chem. Physics, 61st edn. (CRC Press)
[1] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[2] Detection of HIV-1 antigen based on magnetic tunnel junction sensors
Li Li(李丽), Kai-Yu Mak(麦启宇), Yan Zhou(周艳). Chin. Phys. B, 2020, 29(8): 088701.
[3] Influences of annealing temperature on properties of Fe2+: ZnSe thin films deposited by electron beam evaporation and their applications to Q-switched fiber laser
Du-Xin Qing(卿杜鑫), Shu-Tong Wang(王树同), Shou-Gui Ning(宁守贵), Wei Zhang(张伟), Xiao-Xu Chen(陈晓旭), Hong Zhang(张弘), Guo-Ying Feng(冯国英), Shou-Huan Zhou(周寿桓). Chin. Phys. B, 2020, 29(5): 054208.
[4] Evaporation of nanoscale water on solid surfaces
Rongzheng Wan(万荣正) and Haiping Fang(方海平). Chin. Phys. B, 2020, 29(12): 126601.
[5] Direct simulation Monte Carlo study of metal evaporation with collimator in e-beam physical vapor deposition
Xiaoyong Lu(卢肖勇), Junjie Chai(柴俊杰). Chin. Phys. B, 2019, 28(7): 074702.
[6] Cryogenic amplifier with low input-referred voltage noise calibrated by shot noise measurement
Wuhao Yang(杨伍昊), Jian Wei(危健). Chin. Phys. B, 2018, 27(6): 060702.
[7] Numerical simulation of metal evaporation based on the kinetic model equation and the direct simulation Monte Carlo method
Xiaoyong Lu(卢肖勇), Xiaozhang Zhang(张小章), Zhizhong Zhang(张志忠). Chin. Phys. B, 2018, 27(12): 124702.
[8] Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films
Biao Shi(石标), Sheng Guo(郭升), Changchun Wei(魏长春), Baozhang Li(李宝璋), Yi Ding(丁毅), Yuelong Li(李跃龙), Qing Wan(万青), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2018, 27(1): 018807.
[9] Influence of Ag and Sn incorporation in In2S3 thin films
Lin Ling-Yan, Yu Jin-Ling, Cheng Shu-Ying, Lu Pei-Min. Chin. Phys. B, 2015, 24(7): 078103.
[10] Influence of obstacle on electromagnetic wave propagation in evaporation duct with experiment verification
Shi Yang, Yang Kun-De, Yang Yi-Xin, Ma Yuan-Liang. Chin. Phys. B, 2015, 24(5): 054101.
[11] Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation
Shi Yang, Yang Kun-De, Yang Yi-Xin, Ma Yuan-Liang. Chin. Phys. B, 2015, 24(4): 044102.
[12] Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors
Wu Shao-Hang, Zhang Nan, Hu Yong-Sheng, Chen Hong, Jiang Da-Peng, Liu Xing-Yuan. Chin. Phys. B, 2015, 24(10): 108504.
[13] Effects of thermal annealing on the properties of N-implanted ZnS films
Xue Shu-Wen, Zhang Jun, Quan Jun. Chin. Phys. B, 2014, 23(5): 057803.
[14] Optical and electrical characterizations of nanoparticle Cu2S thin films
M. Saadeldin, H. S. Soliman, H. A. M. Ali, K. Sawaby. Chin. Phys. B, 2014, 23(4): 046803.
[15] Influences of anionic and cationic dopants on the morphology andoptical properties of PbS nanostructures
Ramin Yousefi, Mohsen Cheragizade, Farid Jamali-Sheini, M. R. Mahmoudian, Abdolhossein Saaédi, Nay Ming Huang. Chin. Phys. B, 2014, 23(10): 108101.
No Suggested Reading articles found!