Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128801    DOI: 10.1088/1674-1056/ab520f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of highly efficient perovskite solar cells with inorganic hole transport material

I Kabir, S A Mahmood
Department of Electrical and Electronics Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
Abstract  Organo-halide perovskites in planar heterojunction architecture have shown considerable promise as efficient light harvesters in solar cells. We carry out a numerical modeling of a planar lead based perovskite solar cell (PSC) with Cu2ZnSnS4 (CZTS) as the hole transporting material (HTM) using the one-dimensional solar cell capacitance simulator (SCAPS-1D). The effects of numerous parameters such as defect density, thickness, and doping density of the absorber layer on the device performance are investigated. The doping densities and electron affinities of the electron transporting material (ETM) and the HTM are also varied to optimize the PSC performance. It has been observed that a thinner absorber layer of~220 nm with a defect density of 1014 cm-3 compared to the reference structure improves the device performance. When doping density of the absorber layer increases beyond 2×1016 cm-3, the power conversion efficiency (PCE) reduces due to enhanced recombination rate. The defect density at the absorber/ETM interface reduces the PCE as well. Considering a series resistance of 5 Ω·cm2 and all the optimum parameters of absorber, ETM and HTM layers simultaneously, the overall PCE of the device increases significantly. In comparison with the reference structure, the PCE of the optimized device has been increased from 12.76% to 22.7%, and hence the optimized CZTS based PSC is highly efficient.
Keywords:  CH3NH3PbI3      Cu2ZnSnS4 (CZTS)      SCAPS-1D      absorption coefficient  
Received:  08 July 2019      Revised:  29 September 2019      Published:  05 December 2019
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.fc (Modeling and analysis)  
Corresponding Authors:  S A Mahmood     E-mail:  asifmahmood@eee.buet.ac.bd

Cite this article: 

I Kabir, S A Mahmood Analysis of highly efficient perovskite solar cells with inorganic hole transport material 2019 Chin. Phys. B 28 128801

[34] Herz L M 2017 ACS Energy Lett. 2 1539
[1] Park N G, Gratzel M, Miyasaka T, Zhu K and Emery K 2016 Nat. Energy 1 16152
[35] Chihi A, Boujmil M F and Bessais B 2017 J. Electron. Mater. 46 5270
[2] Hawash Z, Ono L K and Qi Y 2018 Adv. Mater. Interfaces 5 1700623
[36] Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J and Guha S 2013 Prog. Photovolt: Res. Appl. 21 72
[3] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E and Grätzel M 2012 Sci. Rep. 2 591
[37] Wanda M D, Ouédraogo S, Tchoffo F, Zougmoré F and Ndjaka J M B 2016 Int. J. Photoenergy 1
[4] Liu D and Kelly T L 2014 Nat. Photon. 8 133
[38] https://www.pvlighthouse.com.au/refractive-index-library
[5] Jiang M, Niu Q, Tang X, Zhang H, Xu H, Huang W, Yao J, Yan B and Xia R 2019 Polymers 11 147
[39] Sap J A, Isabella O, Jager K and Zeman M 2011 Thin Solid Films 520 1096
[6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[40] Ng A, Ren Z, Shen Q, Cheung S H, Gokkaya H C, So S K, Djurisic A B, Wan Y, Wu X and Surya C 2016 ACS Appl. Mater. Interfaces 8 32805
[7] Fakharuddin A, De Rossi F, Watson T M, Schmidt-Mende L and Jose R 2016 APL Mater. 4 091505
[41] Zhou Y and Long G 2017 J. Phys. Chem. C 121 1455
[8] Werner J, Niesen B and Ballif C 2018 Adv. Mater. Interfaces 5 1700731
[42] Baloch A A, Hossain M I, Tabet N and Alharbi F H 2018 J. Phys. Chem. Lett. 9 426
[9] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[43] Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y and Fan Z 2015 Sci. Rep. 5 14083
[10] Baltakesmez A, Biber M and Tüzemena S 2018 J. Radiat. Res. App. Scis 11 124
[44] Lim K G, Ahn S, Kim Y H, Qi Y and Lee T W 2016 Energy Environ. Sci. 9 932
[11] Kim Y, Jung E H, Kim G, Kim D, Kim B J and Seo J 2018 J. Adv. Energy Mater. 8 1801668
[45] Thakur U, Kisslinger R and Shankar K 1996 Nano Mater. 7 95
[12] Nia N Y, Matteocci F, Cina L and Carlo A D 2017 ChemSusChem. 10 3854
[46] Jiang C S, Yang M, Zhou Y, To B, Nanayakkara S U, Luther J M, Zhou W, Berry J J, Van De Lagemaat J, Padture N P, Zhu K and Al-Jassim M M 2015 Nat. Commun. 6 8397
[13] Wang Y, Hu Y, Han D, Yuan Q, Caoc T, Chen N, Zhou D, Cong H and Feng L 2019 Org. Electron. 70 63
[47] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Nature 567 511
[14] Jena A K, Numata Y, Ikegami M and Miyasaka T 2018 J. Mater. Chem. A 6 2219
[48] Ravindiran M and Praveenkumar C 2018 Renew. Sustain. Energy Rev. 94 317
[15] Ava T, Al-Mamun A, Marsillac S and Namkoong G 2019 Appl. Sci. 9 188
[49] Zhang X, Fu E, Wang Y and Zhang C 2019 Nanomaterials 9 336
[16] Hu L, Li M, Yang K, Xiong Z, Yang B, Wang M, Tang X, Zang Z, Liu X, Li B, Xiao Z, Lu S, Gong H, Ouyang J and Sun K 2018 J. Mater. Chem. A 6 16583
[17] Heo J H, Han H J, Lee M, Song M, Kim D H and Im S H 2015 Energy Environ. Sci. 8 2922
[18] Zhou P, Bu T, Shi S, Li L, Zhang Y, Ku Z, Peng Y, Zhong J, Cheng Y B and Huang F 2018 J. Mater. Chem. C 6 5733
[19] Ye S, Sun W, Li Y, Yan W, Peng H, Bian Z, Lui Z and Huang C 2015 Nano Lett. 15 3723
[20] Zuo C and Ding L 2015 Small 11 5528
[21] Patel S B, Patel A H and Gohel J V 2018 Cryst. Eng. Comm. 20 7677
[22] Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z and Xin J 2017 ACS Appl. Mater. Interfaces 9 41354
[23] Xu L, Deng L L, Cao J, Wang X, Chen W Y and Jiang Z 2017 Nanoscale Res. Lett. 12 159
[24] Yang S, Fu W, Zhang Z, Chen H and Li C Z 2017 J. Mater. Chem. A 5 11462
[25] Wu Q, Xue C, Li Y, Zhou P, Liu W, Zhu J, Dai S, Zhu C and Yang S 2015 ACS Appl. Mater. Interfaces 7 28466
[26] Zuo Y, Chen L, Jiang W, Liu B, Zeng C, Li M and Shi X 2018 Mater. Tehno. 52 483
[27] Mahmood K, Sarwar S and Mehran M 2017 RSC Adv. 7 17044
[28] Wang R, Mujahid M, Duan Y, Wang Z K, Xue J and Yang Y 2019 Adv. Funct. Mater. 1808843
[29] Burgelman M, Decock K, Khelifi S and Abass A 2013 Thin Solid Films 535 296
[30] Kabir I, Sadik F and Mahmood S A 2018 10th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh 20-22 December 2018, p. 145
[31] Chouhan A S, Jasti N P and Avasthi S 2018 Mater. Lett. 221 150
[32] Tan K, Lin P, Wang G, Liu Y, Xu Z and Lin Y 2016 Solid State Electron. 126 75
[33] Li H, Yang Y, Feng X, Shen K, Li H, Li J, Jiang Z and Song F 2016 Nanomater Nanotechnol. 6 24
[34] Herz L M 2017 ACS Energy Lett. 2 1539
[35] Chihi A, Boujmil M F and Bessais B 2017 J. Electron. Mater. 46 5270
[36] Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J and Guha S 2013 Prog. Photovolt: Res. Appl. 21 72
[37] Wanda M D, Ouédraogo S, Tchoffo F, Zougmoré F and Ndjaka J M B 2016 Int. J. Photoenergy 1
[38] https://www.pvlighthouse.com.au/refractive-index-library
[39] Sap J A, Isabella O, Jager K and Zeman M 2011 Thin Solid Films 520 1096
[40] Ng A, Ren Z, Shen Q, Cheung S H, Gokkaya H C, So S K, Djurisic A B, Wan Y, Wu X and Surya C 2016 ACS Appl. Mater. Interfaces 8 32805
[41] Zhou Y and Long G 2017 J. Phys. Chem. C 121 1455
[42] Baloch A A, Hossain M I, Tabet N and Alharbi F H 2018 J. Phys. Chem. Lett. 9 426
[43] Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y and Fan Z 2015 Sci. Rep. 5 14083
[44] Lim K G, Ahn S, Kim Y H, Qi Y and Lee T W 2016 Energy Environ. Sci. 9 932
[45] Thakur U, Kisslinger R and Shankar K 1996 Nano Mater. 7 95
[46] Jiang C S, Yang M, Zhou Y, To B, Nanayakkara S U, Luther J M, Zhou W, Berry J J, Van De Lagemaat J, Padture N P, Zhu K and Al-Jassim M M 2015 Nat. Commun. 6 8397
[47] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Nature 567 511
[48] Ravindiran M and Praveenkumar C 2018 Renew. Sustain. Energy Rev. 94 317
[49] Zhang X, Fu E, Wang Y and Zhang C 2019 Nanomaterials 9 336
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[3] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[4] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[5] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[6] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[7] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[8] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei, Shen Hong-Lie, Jin Jia-Le, Li Jin-Ze, Ma Yue. Chin. Phys. B, 2015, 24(5): 056805.
[9] Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer
Liu Qiang, Huang Hong-Hua, Wang Yao, Wang Gui-Shi, Cao Zhen-Song, Liu Kun, Chen Wei-Dong, Gao Xiao-Ming. Chin. Phys. B, 2014, 23(6): 064205.
[10] Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique
Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek. Chin. Phys. B, 2013, 22(11): 117802.
[11] Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy
Jin Wu-Jun, Li Tao, Zhao Kun, Zhao Hui. Chin. Phys. B, 2013, 22(11): 118701.
[12] The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range
Zuo Zhi-Gao, Ling Fu-Ri, Ma De-Cai, Wu Liang, Liu Jin-Song, Yao Jian-Quan. Chin. Phys. B, 2013, 22(10): 107802.
[13] Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells
Cao Xiao-Long, Li Zhong-Yang, Yao Jian-Quan, Wang Yu-Ye, Zhu Neng-Nian, Zhong Kai, Xu De-Gang. Chin. Phys. B, 2012, 21(8): 084207.
[14] Band structure and absorption coefficient in GaN/AlGaN quantum wires
Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min. Chin. Phys. B, 2010, 19(7): 077101.
[15] The simulation of temperature dependence of responsivity and response time for 6H-SiC UV photodetector
Zhang Yi-Men, Zhou Yong-Hua, Zhang Yu-Ming. Chin. Phys. B, 2007, 16(5): 1276-1279.
No Suggested Reading articles found!