Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124206    DOI: 10.1088/1674-1056/ab4f5f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions

Jianming Liu(刘建明)1, Xiangguo Meng(孟祥国)2
1 Department of Computer, Weifang Medical University, Weifang 261000, China;
2 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
Abstract  We theoretically analyze the photon number distribution, entanglement entropy, and Wigner phase-space distribution, considering the finite-dimensional pair coherent state (FDPCS) generated in the nonlinear Bose operator realization. Our results show that the photon number distribution is governed by the two-mode photon number sum q of the FDPCS, the entanglement of the FDPCS always increases quickly at first and then decreases slowly for any q, and the nonclassicality of the FDPCS for odd q is more stronger than that for even q.
Keywords:  finite-dimensional pair coherent state      entangled state  
Received:  22 September 2019      Revised:  11 October 2019      Published:  05 December 2019
PACS:  42.50.-p (Quantum optics)  
  05.30.-d (Quantum statistical mechanics)  
  03.65.-w (Quantum mechanics)  
Corresponding Authors:  Jianming Liu, Xiangguo Meng     E-mail:  sdwfljm@126.com;mengxiangguo1978@sina.com

Cite this article: 

Jianming Liu(刘建明), Xiangguo Meng(孟祥国) Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions 2019 Chin. Phys. B 28 124206

[36] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
[1] Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[37] Du C X, Meng X G, Zhang R and Wang J S 2017 Chin. Phys. B 26 120301
[2] Takahashi H, Neergaard-Nielsen J S, Takeuchi M, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2010 Nat. Photon. 4 178
[38] Wang J S, Meng X G and Fan H Y 2017 J. Mod. Opt. 64 1398
[3] Kurochkin Y, Prasad A S and Lvovsky A I 2014 Phys. Rev. Lett. 112 070402
[39] Meng X G, Wang Z, Wang J S and Fan H Y 2013 J. Opt. Soc. Am. B 30 1614
[4] Hu L Y, Liao Z Y and Zubairy M S 2017 Phys. Rev. A 95 012310
[40] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[5] Huang P, He G, Fang J and Zeng G 2013 Phys. Rev. A 87 012317
[41] Xu Y J and Meng X G 2019 Laser Phys. 29 065002
[6] Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581
[42] Lv H Y, Wang J S, Zhang X Y, Wu M Y, Liang B L and Meng X G 2019 Chin. Phys. B 28 090302
[7] Hou L L, Sui Y X, Wang S and Xu X F 2019 Chin. Phys. B 28 044203
[43] Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
[8] Hou L L, Xue J Z, Sui Y X and Wang S 2019 Chin. Phys. B 28 094217
[44] Wang J S, Meng X G and Fan H Y 2019 Chin. Phys. B 28 100301
[9] Agarwal G S and Biswas A 2005 J. Opt. B: Quan. Semi. Opt. 7 350
[45] Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
[10] Mancini S and Tombesi P 2003 Quantum Inf. Comput. 3 106
[46] Wang Z, Meng X G and Fan H Y 2013 J. Phys. A: Math. Theor. 46 135305
[11] Gong Y X 2013 Phys. Rev. A 88 043841
[47] Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
[12] Gá bris A and Agarwal G S 2007 Int. J. Quan. Inf. 5 17
[48] Meng X G, Wang J S, Liang B L and Du C X 2018 J. Exp. Theor. Phys. 127 383
[13] Gerry C C and Mimih J 2010 Phys. Rev. A 82 013831
[49] Meng X G, Wang J S and Liang B L 2010 Opt. Commun. 283 4025
[14] Zhu F, Zhang C H, Liu A P and Wang Q 2016 Phys. Lett. A 380 1408
[15] Wang X, Wang Y, Chen R K, Zhou C, Li H W and Bao W S 2016 Laser Phys. 26 065203
[16] Agarwal G S 1986 Phys. Rev. Lett. 57 827
[17] Gou S C, Steinbach J and Knight P L 1996 Phys. Rev. A 54 R1014
[18] Gilchrist A and Munro W J 2000 J. Opt. B: Quantum Semiclass. Opt. 2 47
[19] Gerry C C, Mimih J and Birrittella R 2011 Phys. Rev. A 84 023810
[20] Gerry C C and Grobe R 1995 Phys. Rev. A 51 1698
[21] Gou S C, Steinbach J and Knight P L 1996 Phys. Rev. A 54 4315
[22] Chung W S and Hassanabadi H 2019 Eur. Phys. J. Plus 134 394
[23] Lee C T 1990 Phys. Rev. A 41 1569
[24] Obada A S F and Khalil E M 2006 Opt. Commun. 260 19
[25] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[26] Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S 2012 J. Opt. Soc. Am. B 29 1844
[27] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[28] Xu X X 2015 Phys. Rev. A 92 012318
[29] Li K C, Meng X G and Wang J S 2019 Commun. Theor. Phys. 71 807
[30] Li K C, Meng X G and Wang J S 2019 Int. J. Theor. Phys. 58 2521
[31] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[32] Fan H Y 2004 Int. J. Mod. Phys. B 18 1387
[33] Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
[34] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[35] Meng X G, Wang J S and Fan H Y 2011 Opt. Commun. 284 2070
[36] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
[37] Du C X, Meng X G, Zhang R and Wang J S 2017 Chin. Phys. B 26 120301
[38] Wang J S, Meng X G and Fan H Y 2017 J. Mod. Opt. 64 1398
[39] Meng X G, Wang Z, Wang J S and Fan H Y 2013 J. Opt. Soc. Am. B 30 1614
[40] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[41] Xu Y J and Meng X G 2019 Laser Phys. 29 065002
[42] Lv H Y, Wang J S, Zhang X Y, Wu M Y, Liang B L and Meng X G 2019 Chin. Phys. B 28 090302
[43] Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
[44] Wang J S, Meng X G and Fan H Y 2019 Chin. Phys. B 28 100301
[45] Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
[46] Wang Z, Meng X G and Fan H Y 2013 J. Phys. A: Math. Theor. 46 135305
[47] Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
[48] Meng X G, Wang J S, Liang B L and Du C X 2018 J. Exp. Theor. Phys. 127 383
[49] Meng X G, Wang J S and Liang B L 2010 Opt. Commun. 283 4025
[1] Optical complex integration-transform for deriving complex fractional squeezing operator
Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(3): 030306.
[2] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[3] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[4] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[5] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[6] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[7] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[8] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[9] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[10] Hybrid entanglement concentration assisted with single coherent state
Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(3): 030302.
[11] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu, Qian Shang-Wu. Chin. Phys. B, 2015, 24(4): 040301.
[12] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na, Quan Dong-Xiao, Pei Chang-Xing, Yang-Hong. Chin. Phys. B, 2015, 24(2): 020304.
[13] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[14] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[15] Dissipative preparation of a steady three-dimensional entangled state via quantum-jump-based feedback
Chen Li, Wang Hong-Fu, Zhang Shou. Chin. Phys. B, 2014, 23(3): 030301.
No Suggested Reading articles found!