Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124204    DOI: 10.1088/1674-1056/ab4d45
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer

Jia-Jia Mu(牟佳佳)1, Chang-Yi He(何畅意)1, Wei-Jie Sun(孙伟杰)2, Yue Guan(管越)1
1 College of Science, Beihua University, Jilin 132013, China;
2 Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We describe the synthesis of three-dimensional (3D) multilayer ZnO@Ag/SiO2@Ag nanorod arrays by the physico-chemical method. The surface-enhanced Raman scattering (SERS) performance of the 3D multilayer ZnO@Ag/SiO2@Ag nanorod arrays is studied by varying the thickness of dielectric layer SiO2 and outer-layer noble Ag. The 3D ZnO@Ag/SiO2@Ag nanorod arrays create a huge number of SERS “hot spots” that mainly contribute to the high SERS sensitivity. The great enhancement of SERS results from the electron transfer between ZnO and Ag and different electromagnetic enhancements of Ag nanoparticles (NPs) with different thicknesses. Through the finite-difference time-domain (FDTD) theoretical simulation, the enhancement of SERS signal can be ascribed to a strong electric field enhancement produced in the 3D framework. The simplicity and generality of our method offer great advantages for further understanding the SERS mechanism induced by the surface plasmon resonance (SPR) effect.
Keywords:  ZnO      multilayer composite structure      surface-enhanced Raman scattering (SERS)      dielectric layer      electromagnetic field enhancement  
Received:  06 June 2019      Revised:  24 August 2019      Published:  05 December 2019
PACS:  42.55.Ye (Raman lasers)  
  02.70.Bf (Finite-difference methods)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the Fund from the Science and Technology Department of Jilin Province, China (Grant No. 20170520108JH), the Beihua University Youth Nurtural Fund, China (Grant No. 2017QNJJL15), the Beihua University PhD Research Start-up Fund, China (Grant No. 202116140), and the Undergraduate Innovation Project, China (Grant No. 220718100).
Corresponding Authors:  Jia-Jia Mu     E-mail:  allthat2010@126.com

Cite this article: 

Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越) Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer 2019 Chin. Phys. B 28 124204

[1] Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R and Tripp R A 2006 Nano Lett. 6 2630
[2] Kneipp K and Kneipp H 2006 Accounts. Chem. Res. 39 443
[3] Deng X G, Brartiun G B, Liu S, Sciortino P F, Koefer B, Tombler T and Moskovits M 2010 Nano Lett. 10 1780
[4] Fang Z, Cai J, Yan Z, Nordlander P, Halas N J and Zhu X 2011 Nano Lett. 11 4475
[5] Tong L M, Xu H X 2012 Physics 41 582 (in Chinese)
[6] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[7] Brolo A G 2012 Nat Photon. 6 709
[8] Zhao J, Sun M T, Liu Z, Quan B G, Gu C Z and Li J J 2015 Sci. Rep. 5 16019
[9] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
[10] Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957
[11] Liu L W, Zhou W Q, Zeng Z Q and Jin M L 2016 J. Raman Spectrosc. 47 1200
[12] Zhang Y J, Sun H H, Gao R X, Zhang F, Zhu A and Chen L 2018 Sens. & Actuators B: Chemical 272 34
[13] Chen C, Zhou X, Ding T T, Zhang J, Wang S, Xu J, Chen J W, Dai J N and Chen C Q 2016 Mater. Lett. 165 55
[14] Zhou J, Zhang J S, Xian G, Qi Q, Gu S Z, Shen C M, Cheng S H, He S T and Yang H T 2019 Chin. Phys. B 28 083301
[15] Huang T, Cao L, Zhang X, Xiong X Y, Xu J J and Xiao R S 2019 J. Alloys Compd. 790 127
[16] Wu C L, Hsueh C H and Li J H 2019 Opt. Express 27 1660
[17] Liu Y J, Xu C X, Zhu Z, You D T, Wang R, Qin F F, Wang X X, Cui Q N and Shi Z L 2018 Cryst. Growth & Design 18 5279
[18] Pal A K, Pagal S, Prashanth K, Chandra G K, Umapathy S and Mohan D B 2019 Sens. & Actuators B: Chemical 279 157
[19] Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
[20] Tian Y, Wang H F, Yan L Q, Zhang X F, Attia F, Chen P P, Dong F L, Sun L F and Chu W G 2018 Chin. Phys. B 27 077406
[21] Lei S J, Tao C J, Li J L, Zhao X and Wang W Z 2018 Appl. Surf. Sci. 452 148
[22] Li J F, Anema J R, Wandlowski T and Tian Z Q 2015 Chem. Soc. Rev. 44 8399
[23] Tang H B, Meng G W, Huang Q, Zhang Z, Huang Z L and Zhu C H 2012 Adv. Funct. Mater. 22 218
[24] Zhao Y, Zeng W C, Tao Z C, Xiong P H, Qu Y and Zhu Y W 2015 Chem. Commun. 51 866
[25] Huang J A, Zhao Y Q, Zhang X J, He L F, Wong T L, Chui Y S, Zhang W J and Lee S T 2013 Nano Lett. 13 5039
[26] Hu Z S, Liu Z, Li L, Quan B G, Li Y J, Li J and Gu C Z 2014 Small 10 3933
[27] Xu L L, Li S, Li F, Zhang H, Wang D M, Chen M and Chen F 2017 Opt. Mater. Express 7 3137
[28] Liu K, Bai Y, Zhang L, Yang Z, Fan Q, Zheng H, Yin Y and Gao C 2016 Nano Lett. 16 3675
[29] Ma L W, Huang Y, Hou M J, Li J H, Xie Z and Zhang Z J 2016 J. Phys. Chem. C 120 606
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[5] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[6] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[7] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[8] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[9] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[10] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪) and Xianghua Zeng(曾祥华)†. Chin. Phys. B, 2020, 29(10): 104211.
[11] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[12] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[13] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[14] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[15] Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors
Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙). Chin. Phys. B, 2019, 28(8): 087302.
No Suggested Reading articles found!