Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 113101    DOI: 10.1088/1674-1056/ab4cdd
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study

Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪)
Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  It is important for environmental protection to search for catalysts with excellent performance and cost-effective to reduce SO2 by CO. In this work, using first-principles calculation, we have studied the catalytic performance of Au5Mn (M=Ni, Pd, Pt, Cu, Ag, Au; n=1, 0, -1) clusters, and showed that, by giving a negative charge to the Au5M (M=Cu, Ag, Au, Pd) clusters, we could improve the selectivity of SO2 and avoid effectively catalyst CO poisoning simultaneously. At the same time, the catalytic reaction rate for the reduction of SO2 by CO with Au5M- (M=Cu, Ag, Au, Pd) clusters is greatly improved when the Au5M clusters are charged. These advantages can be well explained by the charge transfer between the clusters and adsorbed molecules, which means that we can effectively control the performance of the catalyst. The equilibrium structures of Au5Mn (M=Ni, Pd, Pt, Cu, Ag, Au; n=1, 0, -1) clusters without or with adsorbed SO2 or CO molecule are also discussed, and the most stable geometrical structures of Au5Mn-ML (ML=SO2, CO, SO, and COS) can be explained very well by the match of orbitals symmetry and density of electron cloud through their frontier molecular orbitals. Considering the catalyst cost (Cu is much cheaper than Ag and Au), selectivity of SO2, and effectively avoiding the catalyst CO poisoning, we propose that Au5Cu- is an ideal catalyst for getting rid of SO2 and CO simultaneously.
Keywords:  bimetallic clusters      catalyst      first-principles      electronic structure     
Received:  17 September 2019      Published:  05 November 2019
PACS:  31.15.Ar  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375091), the Natural Science Foundation of Zhejiang, China (Grant No. LY18A040003), the Natural Science Foundation of Ningbo, China (Grant No. 2018A610220), and the K.C. Wong Magna Fund in Ningbo University, China. The computation was performed in the Supercomputer Center of NBU.
Corresponding Authors:  Shi-Hao Wei     E-mail:  weishihao@nbu.edu.cn

Cite this article: 

Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪) Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study 2019 Chin. Phys. B 28 113101

[36] Tsunoyama H, Sakurai H, Negishi Y and Tsukuda T 2005 J. Am. Chem. Soc. 127 9374
[1] Kennes C and Veiga M C 2001 Fundamentals of Air Pollution (Vol. 4) (Dordrecht:Springer) pp. 3-15
[37] Liu H, Liu Y, Li Y, Tang Z and Jiang H 2010 J. Phys. Chem. C 114 13362
[2] Bao H, Yu S and Tong D Q 2010 Nature 465 909
[38] Reina M and Martínez A 2018 Comput. Theor. Chem. 1130 15
[3] Li Y R and Gibson J M 2014 Environ. Sci.Technol. 48 10019
[39] Okumura M, Kitagawa Y, Haruta M and Yamaguchi K 2005 Appl. Catal. A General 291 37
[4] Chiang T Y, Yuan T H, Shie R H, Chen C F and Chan C C 2016 Environ. Int. 96 1
[40] Wang Z Y, Zhang T L, Li Q H, Xue Q and Wang R 2016 Comput. Theor. Chem. 1085 75
[5] Ishiguro A, Nakajima T, Iwata T, Fujita M, Minato T, Kiyotaki F and Matsui Y 2002 Chem. Eur. J. 8 3260
[41] Suggs K, Kiros F, Tesfamichael A, Felfli Z 2015 J. Phys:Conference Series 635 052018
[6] Paik S C, Kim H and Chung J S 1997 Catal. Today 38 193
[42] Zhang H X, Hu C H, Wang D H, Zhong Y, Zhou H Y, and Rao G H 2018 Chin. Phys. B 27 083601
[7] Liu W, Sarofim A F and Flytzani-Stephanopoulos M 1994 Appl. Catal. B:Environ. 4 167
[43] Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
[8] Zhu T, Kundakovic L, Dreher A and Flytzani-Stephanopoulos M 1999 Catal. Today 50 381
[44] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[9] Sarlis J and Berk D 1988 Ind. Eng. Chem. Res. 27 1951
[45] Guo J J, Wei C F, Yang J X and Die D 2010 Chin. Phys. B 19 113601
[10] Humeres E, Peruch M G B, Moreira R F P M and Schreiner W 2003 J. Phys. Org. Chem. 16 824
[46] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
[11] Wang X, Wang A, Wang X and Zhang T 2007 Energy Fuels 21 867
[47] Delley B 1990 J. Chem. Phys. 92 508
[12] Wang X, Wang A, Li N, Wang X, Liu Z and Zhang T 2006 Ind. Eng. Chem. Res. 45 4582
[48] Delley B 2000 J. Chem. Phys. 113 7756
[13] Gao G P, Wei S H and Duan X M 2012 J. Phys. Chem. C 116 24930
[49] Hammer B 1999 Phys. Rev. B 59 7413
[14] Lau N T, Fang M, Chan C K 2007 J. Catal. 245 301
[50] Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
[15] Liu W, Sarofim A F and Flytzani-Stephanopoulos M 1994 Appl. Catal. B:Environ. 4 167
[51] Lu J, Wei S H, Zhang Y Y, Hua D Y and Duan X M 2016 Comput. Theor. Chem. 1090 157
[16] Lemons R A 1990 J. Power Sources 29 251
[52] Zhao G F and Zeng Z 2006 J. Chem. Phys. 125 014303
[17] Hammer B and Norskov J K 1995 Nature 376 238
[53] Guo J J, Yang J X and Die D 2009 J. Mol. Struct. ThEOCHEM 896 1
[18] Haruta M, Kobayashi T, Sano H and Yamada N 1987 Chem. Lett. 16 405
[54] Guo J J, Shi J, Yang J X and Die D 2007 Physica B 393 363
[19] Tsubota S, Cunningham D A H, Bando Y and Haruta M 1995 Stud. Surf. Sci. Catal. 91 227
[55] Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
[20] Haruta M 1997 Catal. Today 36 153
[56] Lu P, Kuang X Y, Mao A J, Wang Z H and Zhao Y R 2011 Mol. Phys. 109 2057
[21] Haruta M 1997 Catal. Surv. Asia 1 61
[57] Guo J J, Yang J X and Xu S L 2008 J. Atom. Mol. Phys. 4 17
[22] Haruta M 2003 Chem. Record 3 75
[58] Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206
[23] Valden M, Lai X and Goodman D W 1998 Science 281 1647
[24] Chen S, Luo L, Jiang Z and Huang W 2015 ACS Catalysis 5 1653
[25] Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, M.Lange K and Zhang B 2018 J. Am. Chem. Soc. 140 3876
[26] Wang L, Guan E, Zhang J, Yang J, Zhu Y, Han Y, Yang M, Cen C, Fu G, C.Gates B and Xiao F 2018 Nat. Commun. 9 1362
[27] Martirez J. M. P and Carter E. A 2016 ACS Nano 10 2940
[28] Ma J, Gong H, Zhang T, Yu H, Zhang R, Liu Z, Yang G, Sun H, Tang S and Qiu Y 2019 Appl. Sur. Sci. 488 1
[29] Liu X, Wang A, Li L, Zhang T, Mou C Y and Lee J F 2011 J. Catal. 278 288
[30] Zhang L, Kim H Y and Henkelman G 2013 J. Phys. Chem. Lett. 4 2943
[31] Roldán A, González Gonzalez S, Ricart J M and Illas F 2009 Chem. Phys. Chem. 10 348
[32] Lyalin A and Taketsugu T 2010 J. Phys. Chem. Lett. 1 1752
[33] Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N, Ribeiro F H 2012 J. Am. Chem. Soc. 134 4700
[34] Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P and Chen B 2017 Science 357 389
[35] Prati L and Rossi M 1998 J. Catal. 176 552
[36] Tsunoyama H, Sakurai H, Negishi Y and Tsukuda T 2005 J. Am. Chem. Soc. 127 9374
[37] Liu H, Liu Y, Li Y, Tang Z and Jiang H 2010 J. Phys. Chem. C 114 13362
[38] Reina M and Martínez A 2018 Comput. Theor. Chem. 1130 15
[39] Okumura M, Kitagawa Y, Haruta M and Yamaguchi K 2005 Appl. Catal. A General 291 37
[40] Wang Z Y, Zhang T L, Li Q H, Xue Q and Wang R 2016 Comput. Theor. Chem. 1085 75
[41] Suggs K, Kiros F, Tesfamichael A, Felfli Z 2015 J. Phys:Conference Series 635 052018
[42] Zhang H X, Hu C H, Wang D H, Zhong Y, Zhou H Y, and Rao G H 2018 Chin. Phys. B 27 083601
[43] Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
[44] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[45] Guo J J, Wei C F, Yang J X and Die D 2010 Chin. Phys. B 19 113601
[46] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
[47] Delley B 1990 J. Chem. Phys. 92 508
[48] Delley B 2000 J. Chem. Phys. 113 7756
[49] Hammer B 1999 Phys. Rev. B 59 7413
[50] Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
[51] Lu J, Wei S H, Zhang Y Y, Hua D Y and Duan X M 2016 Comput. Theor. Chem. 1090 157
[52] Zhao G F and Zeng Z 2006 J. Chem. Phys. 125 014303
[53] Guo J J, Yang J X and Die D 2009 J. Mol. Struct. ThEOCHEM 896 1
[54] Guo J J, Shi J, Yang J X and Die D 2007 Physica B 393 363
[55] Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
[56] Lu P, Kuang X Y, Mao A J, Wang Z H and Zhao Y R 2011 Mol. Phys. 109 2057
[57] Guo J J, Yang J X and Xu S L 2008 J. Atom. Mol. Phys. 4 17
[58] Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[10] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[11] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[12] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[13] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[14] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[15] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
No Suggested Reading articles found!