Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118103    DOI: 10.1088/1674-1056/ab4cdb
Special Issue: TOPICAL REVIEW — Quantum dot displays
TOPICAL REVIEW—Quantum dot displays Prev   Next  

InP quantum dots-based electroluminescent devices

Qianqian Wu(吴倩倩)1,2, Fan Cao(曹璠)2, Lingmei Kong(孔令媚)1,2, Xuyong Yang(杨绪勇)2
1 School of Material Science and Engineering, Shanghai University, Shanghai 200072, China;
2 Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
Abstract  Indium phosphide (InP) quantum dots (QDs) have shown great potential to replace the widely applied toxic cadmium-containing and lead perovskite QDs due to their similar emission wavelength range and emission peak width but without intrinsic toxicity. Recently, electrically driven red and green InP-based quantum-dot light-emitting diodes (QLEDs) have achieved great progress in external quantum efficiency (EQE), reaching up to 12.2% and 6.3%, respectively. Despite the relatively poor device performance comparing with cadmium selenide (CdSe)-and perovskite-based QLEDs, these encouraging facts with unique environmental friendliness and solution-processability foreshadow the enormous potential of InP-based QLEDs for energy-efficient, high-color-quality thin-film display and solid-state lighting applications. In this article, recent advances in the research of the InP-based QLEDs have been discussed, with the main focus on device structure selection and interface research, as well as our outlook for on-going strategies of high-efficiency InP-based QLEDs.
Keywords:  indium phosphide      quantum dots      light-emitting diodes      external quantum efficiency  
Received:  20 August 2019      Revised:  10 September 2019      Published:  05 November 2019
PACS:  81.07.Ta (Quantum dots)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675322, 61605109, and 61735004), the National Key Research and Development Program of China (Grant No. 2016YFB0401702), Shanghai Science and Technology Committee, China (Grant No. 19010500600), Shanghai Rising-Star Program, China (Grant No. 17QA1401600), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China.
Corresponding Authors:  Xuyong Yang     E-mail:  yangxy@shu.edu.cn

Cite this article: 

Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇) InP quantum dots-based electroluminescent devices 2019 Chin. Phys. B 28 118103

[34] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R and Yang H 2014 Chem. Mater. 27 197
[1] Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341
[35] Cao F, Wang S, Wang F, Wu Q, Zhao D and Yang X 2018 Chem. Mater. 30 8002
[2] Wang C, Shim M and Guyot-Sionnest P 2001 Science 291 2390
[36] Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Funct. Mater. 22 3261
[3] Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
[37] Kirkwood N, Singh B and Mulvaney P 2016 Adv. Mater. Interfaces 3 1600868
[4] Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2013 Nat. Photon. 7 13
[38] Yuan G, Gomez D E, Kirkwood N, Boldt K and Mulvaney P 2018 ACS Nano 12 3397
[5] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407
[39] Kim Y, Ippen C, Fischer B, Lange A and Wedel A 2015 J. Soc. Inf. Disp. 23 377
[6] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
[40] Kim D, Fu Y, Kim S, Lee W, Lee K H, Chung H K, Lee H J, Yang H and Chae H 2017 ACS Nano 11 1982
[7] Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y, Wang S, Du Z, Li L S and Zhang Z 2019 Nat. Photon. 13 192
[41] Wu H, Huang F, Peng J and Cao Y 2005 Org. Electron. 6 118
[8] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245
[42] Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Small 13 1603962
[9] Walters G, Wei M, Voznyy O, Quintero-Bermudez R, Kiani A, Smilgies D M, Munir R, Amassian A, Hoogl S and Sargent E 2018 Nat. Commun. 9 4214
[43] Hahm D, Chang J H, Jeong B G, Park P, Kim J, Lee S, Choi J, Kim W D, Rhee S, Lim J, Lee D C, Lee C, Char K and Bae W K 2019 Chem. Mater. 31 3476
[10] Supran G J, Shirasaki Y, Song, K W, Caruge J M, Kazlas P T, Coe-Sullivan S, Andrew T L, Bawendi M G and Bulović V 2013 MRS Bull. 38 703
[11] Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and Wei W 2018 Acta Phys. Sin. 67 118502(in Chinese)
[12] Anc M J, Pickett N L, Gresty N C, Harris J A and Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3071
[13] Derfus A M, Chan W C and Bhatia S N 2004 Nano Lett. 4 11
[14] Hardman R 2006 Environ. Health Perspect. 114 165
[15] Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J and Yang T 2013 Chin. Phys. Lett. 30 068101
[16] Yang G Q, Zhang S Z, Xu B, Chen Y H and Wang Z G 2017 Chin. Phys. B 26 068103
[17] Tamang S, Lincheneau C, Hermans Y, Jeong S and Reiss P 2016 Chem. Mater. 28 2491
[18] Battaglia D and Peng X 2002 Nano Lett. 2 1027
[19] Byun H J, Song W S and Yang H 2011 Nanotechnology 22 235605
[20] Ramasamy P, Kim N, Kang Y S, Ramirez O and Lee J S 2017 Chem. Mater. 29 6893
[21] Buffard A, Dreyfuss S, Nadal B, Heuclin H, Xu X, Patriarche G, Mézailles N and Dubertret B 2016 Chem. Mater. 28 5925
[22] Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y and Peng X 2019 J. Am. Chem. Soc. 141 6448
[23] Lim J, Park M, Bae W K, Lee D, Lee S, Lee C and Char K 2013 ACS Nano 7 9019
[24] Ramasamy P, Ko K J, Kang J W and Lee J S 2018 Chem. Mater. 30 3643
[25] Kim H Y, Park Y J, Kim J, Han C J, Lee J, Kim Y, Greco T, Ippen C, Wedel A, Ju B K and Oh M S 2016 Adv. Funct. Mater. 26 3454
[26] Cheng T, Wang Z, Jin S, Wang F, Bai Y, Feng H, You B, Li Y, Hayat T and Tan Z A 2017 Adv. Opt. Mater. 5 1700035
[27] Yang X, Zhao D, Leck K S, Tan S T, Tang Y X, Zhao J, Demir H V and Sun X W 2012 Adv. Mater. 24 4180
[28] Yang X, Divayana Y, Zhao D, Leck K S, Lu F, Tan S T, Abiyasa A P, Zhao Y, Demir H V and Sun X W 2012 Appl. Phys. Lett. 101 233110
[29] Zhang H, Hu N, Zeng Z, Lin Q, Zhang F, Tang A, Jia Y, Li L S, Shen H, Teng F and Du Z 2019 Adv. Opt. Mater. 7 1801602
[30] Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H and Qian L 2015 Nat. Photon. 9 259
[31] Ho M D, Kim D, Kim N, Cho S M and Chae H 2013 ACS Appl. Mater. Interfaces 5 12369
[32] Jo J H, Kim J H, Lee K H, Han C Y, Jang E P, Do Y R and Yang H 2016 Opt. Lett. 41 3984
[33] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715
[34] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R and Yang H 2014 Chem. Mater. 27 197
[35] Cao F, Wang S, Wang F, Wu Q, Zhao D and Yang X 2018 Chem. Mater. 30 8002
[36] Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Funct. Mater. 22 3261
[37] Kirkwood N, Singh B and Mulvaney P 2016 Adv. Mater. Interfaces 3 1600868
[38] Yuan G, Gomez D E, Kirkwood N, Boldt K and Mulvaney P 2018 ACS Nano 12 3397
[39] Kim Y, Ippen C, Fischer B, Lange A and Wedel A 2015 J. Soc. Inf. Disp. 23 377
[40] Kim D, Fu Y, Kim S, Lee W, Lee K H, Chung H K, Lee H J, Yang H and Chae H 2017 ACS Nano 11 1982
[41] Wu H, Huang F, Peng J and Cao Y 2005 Org. Electron. 6 118
[42] Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Small 13 1603962
[43] Hahm D, Chang J H, Jeong B G, Park P, Kim J, Lee S, Choi J, Kim W D, Rhee S, Lim J, Lee D C, Lee C, Char K and Bae W K 2019 Chem. Mater. 31 3476
[1] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[2] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[3] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[4] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[5] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[6] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[7] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[8] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[9] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[10] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[11] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[12] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[13] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[14] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[15] SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(3): 037801.
No Suggested Reading articles found!