Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114206    DOI: 10.1088/1674-1056/ab48f1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Double-passage mechanical cooling in a coupled optomechanical system

Qing-Xia Mu(穆青霞)1, Chao Lang(郎潮)1, Wen-Zhao Zhang(张闻钊)2
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China;
2 Beijing Computational Science Research Center(CSRC), Beijing 100193, China
Abstract  We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant parameters of the system and the instantaneous-state mean phonon number of the oscillator cooled to the ground state, particularly at the early stage of the evolution. It is worth noting that the optical coupling sets up a correlation between the two cavity modes, which has significant effect on the cooling process. Using numerical solutions, we find that the inter-cavity coupling will decrease the cooling effect when both cavities have the same effective optomechanical coupling. However, when the effective optomechanical couplings are different, the cooling effect will be strongly improved by selecting appropriate range of inter-cavity coupling.
Keywords:  optomechanical system      ground-state cooling      quantum optics  
Received:  12 June 2019      Revised:  31 July 2019      Published:  05 November 2019
PACS:  42.50.-p (Quantum optics)  
  07.10.Cm (Micromechanical devices and systems)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018MS056) and the National Natural Science Foundation of China (Grant Nos. 11605055 and 11574082).
Corresponding Authors:  Wen-Zhao Zhang     E-mail:  zhangwz@csrc.ac.cn

Cite this article: 

Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊) Double-passage mechanical cooling in a coupled optomechanical system 2019 Chin. Phys. B 28 114206

[36] Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
[1] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[37] Oh S, Shim Y P, Fei J, Friesen M and Hu X 2013 Phys. Rev. A 87 022332
[2] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[38] Oh S, Hu X, Nori F and Kais S 2016 Sci. Rep. 6 20824
[3] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[39] Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M 2012 Opt. Express 20 18319
[4] Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213
[40] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
[5] Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys. 4 555
[41] Li B B, Xiao Y F, Zou C L, Jiang X F, Liu Y C, Sun F W and Li Y 2012 Appl. Phys. Lett. 100 021108
[6] Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
[42] He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802
[7] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[43] Sch ö nleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
[8] Bokje, Nunnenkamp A and Girvin S M 2011 Phys. Rev. Lett. 107 123601
[44] Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
[9] Gall, C, Sangouard N, Piro N, Gisin N and Kippenberg T J 2014 Phys. Rev. Lett. 112 143602
[45] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
[10] Triana J F, Estrada A F and Pachón L A 2016 Phys. Rev. Lett. 116 183602
[11] Sarma B and Sarma A K 2016 Phys. Rev. A 93 033845
[12] Tetard L, Passian A, Venmar K T, Lynch R M, Voy B H, Shekhawat G, Dravid V P and Thundat T 2008 Nat. Nanotechnol. 3 501-505
[13] LaHaye, M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74
[14] B P Abbott et al 2016 Phys. Rev. Lett. 116 061102
[15] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[16] Li Y, Wu L A and Wang Z D 2011 Phys. Rev. A 83 043804
[17] Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2012 New J. Phys. 14 095015
[18] Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S and Mavalvala N 2007 Phys. Rev. Lett. 99 160801
[19] Poggio M, Degen C L, Mamin H J and Rugar D 2007 Phys. Rev. Lett. 99 017201
[20] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209
[21] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[22] Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[23] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553
[24] Liu Y L and Liu Y X 2017 Phys. Rev. A 96 023812
[25] Liu Y C, Xiao Y F, Luan X and Wong C W 2013 Phys. Rev. Lett. 110 153606
[26] Xu M, Jäger S B, Schütz, Cooper J, Morigi G, Holl and M J 2016 Phys. Rev. Lett. 116 153002
[27] Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A 93 063853
[28] Lai D G, Zou F, Hou B P, Xiao Y F and Liao J Q 2018 Phys. Rev. A 98 023860
[29] Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A and Sillanpää M A 2019 Phys. Rev. A 99 023826
[30] Wang M, Lu X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
[31] Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841
[32] Liu Y C, Xiao Y F, Luan X, Gong Q and Wong C W 2015 Phys. Rev. A 91 033818
[33] Zheng L L, Yin T S, Bin Q, Lü X Y and Wu Y 2019 Phys. Rev. A 99 013804
[34] Yan J K, Zhu X F and Chen B 2018 Chin. Phys. B 27 074214
[35] Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Di G and Vitali D 2012 New J. Phys. 14 095015
[36] Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
[37] Oh S, Shim Y P, Fei J, Friesen M and Hu X 2013 Phys. Rev. A 87 022332
[38] Oh S, Hu X, Nori F and Kais S 2016 Sci. Rep. 6 20824
[39] Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M 2012 Opt. Express 20 18319
[40] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
[41] Li B B, Xiao Y F, Zou C L, Jiang X F, Liu Y C, Sun F W and Li Y 2012 Appl. Phys. Lett. 100 021108
[42] He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802
[43] Sch ö nleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
[44] Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
[45] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
[1] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[2] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[3] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[4] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[5] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[6] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[7] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[8] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[9] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[10] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[11] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[12] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[13] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
[14] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
[15] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
No Suggested Reading articles found!