Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110301    DOI: 10.1088/1674-1056/ab457d
GENERAL Prev   Next  

Dynamical evolution of photon-added thermal state in thermal reservoir

Xue-Xiang Xu(徐学翔)1, Hong-Chun Yuan(袁洪春)2
1 College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
2 School of Electrical and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China
Abstract  The dynamical behavior of a photon-added thermal state (PATS) in a thermal reservoir is investigated by virtue of Wigner function (WF) and Wigner logarithmic negativity (WLN), where this propagation model is abstracted as an input-output problem in a thermal-loss channel. The density operator of the output optical field at arbitrary time can be expressed in the integration form of the characteristics function of the input optical field. The exact analytical expression of WF is given, which is closely related to the Laguerre polynomial and is dependent on the evolution time and other interaction parameters (related with the initial field and the reservoir). Based on the WLN, we observe the dynamical evolution of the PATS in the thermal reservoir. It is shown that the thermal noise will make the PATS lose the non-Gaussianity.
Keywords:  quantum statistics      master equation      photon-added thermal state      thermal reservoir      Wigner logarithmic negativity  
Received:  03 August 2019      Revised:  04 September 2019      Published:  05 November 2019
PACS:  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11665013).
Corresponding Authors:  Xue-Xiang Xu, Hong-Chun Yuan     E-mail:;

Cite this article: 

Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春) Dynamical evolution of photon-added thermal state in thermal reservoir 2019 Chin. Phys. B 28 110301

[1] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York:Wiley)
[2] Carmichael H J 1999 Statistical Methods in Quantum Optics 1(Berlin:Springer-Verlag)
[3] Carmichael H J 2008 Statistical Methods in Quantum Optics 2(Berlin:Springer-Verlag)
[4] Carmichael H J 1999 An Open Systems Approach to Quantum Optics (Berlin:Springer-Verlag)
[5] Weiss U 1999 Quantum Dissipative Systems (Singapore:World Scientific)
[6] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford:Clarendon Press)
[7] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag)
[8] Daeubler B, Risken H and Schoendorff L 1993 Phys. Rev. A 48 3955
[9] Briegel H J and Englert B G 1993 Phys. Rev. A 47 3311
[10] d'Ariano G M 1994 Phys. Lett. A 187 231
[11] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[12] Zhou N R, Hu L Y and Fan H Y 2011 Chin. Phys. B 20 120301
[13] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[14] Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
[15] Jiang N Q, Fan H Y, Xi S L, Tang L Y and Yuan X Z 2011 Chin. Phys. B 20 120302
[16] Xu X L, Li H Q and Fan H Y 2015 Chin. Phys. B 24 070306
[17] Wang C C and Fan H Y 2010 Chin. Phys. Lett. 27 110302
[18] Kim M S and Imoto N 1995 Phys. Rev. A 52 2401
[19] Jeong H, Lee J and Kim M S 2000 Phys. Rev. A 61 052101
[20] Agarwal G S and Tara K 1992 Phys. Rev. A 46 485
[21] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[22] Li S B 2008 Phys. Lett. A 372 6875
[23] Wang S J, Xu X X and Ma S J 2010 Int. J. Quant. Inf. 8 1373
[24] Meng X G, Wang J S, Fan H Y and Xia C W 2016 Chin. Phys. B 25 040302
[25] Gardner C W and Zoller P 2000 Quantum Noise (Berlin:Springer-Verlag)
[26] Xu X X and Yuan H C 2017 Int. J. Theor. Phys. 56 791
[27] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[28] Stowe K 2007 An Introduction to Thermodynamics and Statistical Mechanics (Cambridge:Cambridge University Press)
[29] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
[30] Kenfack A and Zyczkowski K 2004 J. Opt. B:Quantum Semiclass. Opt. 6 396
[31] Albarelli F, Genoni M G and Paris M G A 2018 Phys. Rev. A 98 052350
[32] Takagi R and Zhuang Q 2018 Phys. Rev. A 97 062337
[1] Dynamics of spinor Bose-Einstein condensate subject to dissipation
Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江). Chin. Phys. B, 2016, 25(4): 040501.
[2] Organic magnetoresistance based on hopping theory
Yang Fu-Jiang, Xie Shi-Jie. Chin. Phys. B, 2014, 23(9): 097306.
[3] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[4] Comments on “Distillability sudden death in qutrit–qutrit systems under thermal reservoirs”
Mazhar Ali. Chin. Phys. B, 2014, 23(9): 090306.
[5] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng, Fan Hong-Yi. Chin. Phys. B, 2014, 23(3): 030304.
[6] Master equation describing the diffusion process for a coherent state
Liu Tang-Kun, Shan Chuan-Jia, Liu Ji-Bing, Fan Hong-Yi. Chin. Phys. B, 2014, 23(3): 030303.
[7] Drift coefficients of motor proteins moving along sidesteps
Li Jing-Hui. Chin. Phys. B, 2014, 23(10): 100503.
[8] Enhanced electron–positron pair creation by the frequency chirped laser pulse
Jiang Min, Xie Bai-Song, Sang Hai-Bo, Li Zi-Liang. Chin. Phys. B, 2013, 22(10): 100307.
[9] On long-time limit behavior of the solution of atom's master equation
Chen Jun-Hua, Fan Hong-Yi, Jiang Nian-Quan. Chin. Phys. B, 2012, 21(8): 083201.
[10] The population and decay evolution of a qubit under the time-convolutionless master equation
Huang Jiang, Fang Mao-Fa, Liu Xiang. Chin. Phys. B, 2012, 21(1): 014205.
[11] Evolution of a two-mode squeezed vacuum in the amplitude dissipative channel
Jiang Nian-Quan, Fan Hong-Yi, Xi Liu-Sheng, Tang Long-Ying, Yuan Xian-Zhang. Chin. Phys. B, 2011, 20(12): 120302.
[12] Sudden death and revival of entanglement of two qubits coupled collectively to a thermal reservoir
Liao Xiang-Ping, Fang Jian-Shu, Fang Mao-Fa. Chin. Phys. B, 2010, 19(9): 094203.
[13] Shot noise in electron transport through a double quantum dot: a master equation approach
Ou-Yang Shi-Hua, Lam Chi-Hang, You Jian-Qiang. Chin. Phys. B, 2010, 19(5): 050519.
[14] Solving nonlinear master equation describing quantum damping by virtue of the entangled state representation
Fan Hong-Yi, Ren Gang, Hu Li-Yun, Jiang Nian-Quan. Chin. Phys. B, 2010, 19(11): 114206.
[15] Entropy of the rotating and charged black string to all orders in the Planck length
Zhao Ren, Wu Yue-Qin, Zhang Li-Chun. Chin. Phys. B, 2009, 18(5): 1749-1754.
No Suggested Reading articles found!