Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118502    DOI: 10.1088/1674-1056/ab44ac
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector

Xiang Li(李想)1,2, Jian-Dong Sun(孙建东)1, Hong-Juan Huang(黄宏娟)3, Zhi-Peng Zhang(张志鹏)1, Lin Jin(靳琳)1, Yun-Fei Sun(孙云飞)4, V V Popov5, Hua Qin(秦华)1
1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
2 School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;
3 Nanofabrication Facility of the Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
4 College of Electronic and Information Engineering, Suzhou University of Sciences and Technology, Suzhou 215009, China;
5 Kotelnikov Institute of Radio Engineering and Electronics, Saratov Branch, Russian Academy of Sciences, Saratov 410019, Russia
Abstract  Antenna-coupled field-effect-transistors (FETs) offer high sensitivity for terahertz detection. Both the magnitude and the polarity of the response signal are sensitive to the localized terahertz field under the gate. The ability of accurate sensing the intensity pattern is required for terahertz imaging systems. Here, we report artefacts in the intensity pattern of a focused terahertz beam around 1 THz by scanning a silicon-lens and antenna coupled AlGaN/GaN high-electron-mobility-transistor (HEMT) detector. The origin of the image distortion is found to be connected with one of the antenna blocks by probing the localized photocurrents as a function of the beam location and the frequency. Although the exact distortion is found with our specific antenna design, we believe similar artefacts could be commonplace in antenna-coupled FET terahertz detectors when the beam spot becomes comparable with the antenna size. To eliminate such artefacts, new antenna designs are welcomed to achieve strong asymmetry in the terahertz field distribution under the gate while maintaining a more symmetric radiation pattern for the whole antenna.
Keywords:  terahertz detector      self-mixing      high electron mobility transistor      local electrical field  
Received:  30 May 2019      Revised:  30 August 2019      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.80.Ey (III-V and II-VI semiconductors)  
  84.40.Ba (Antennas: theory, components and accessories)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0100501), the National Natural Science Foundation of China (Grant Nos. 61771466, 61775231, and 61611530708), the Six Talent Peaks Project of Jiangsu Province, China (Grant No. XXRJ-079), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017372), the Russian Foundation for Basic Research (Grant No. 17-52-53063), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160400).
Corresponding Authors:  Jian-Dong Sun, Hua Qin     E-mail:  jdsun2008@sinano.ac.cn;hqin2007@sinano.ac.cn

Cite this article: 

Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华) The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector 2019 Chin. Phys. B 28 118502

[1] Levoy M 2006 Computer 3946
[2] Jain R, Grzyb J and Pfeiffer U R 2016 IEEE Trans. THz Sci. Technol. 6 649
[3] Levoy M and Hanrahan P 1996 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM. 31
[4] Isaksen A, McMillan L and Gortler S J 2000 Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co. 297
[5] Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G and Mittleman D M 2008 Appl. Phys. Lett. 9312
[6] Lee A W M and Hu Q 20051 Opt. Lett. 3019
[7] Wang J, Guo C, Guo E L, Wang L, Shi W Z and Chen X S 2019 Chin. Phys. B 284
[8] Li J L, Cui S H, Xu J X, Cui X R, Guo C Y, Ma B, Ni H Q and Niu Z C 2018 Chin. Phys. B 274
[9] Cai X H, Sushkov A B, Suess R J, Jadidi M M, Jenkins G S, Nyakiti L O, Myers-Ward R L, Li S, Yan J, Gaskill D K, Murphy T E, Drew H D and Fuhrer M S 2014 Nat. Nanotechnol. 910
[10] Glaab D, Boppel S, Lisauskas A, Pfeiffer U, Öjefors E and Roskos H G 2010 Appl. Phys. Lett. 964
[11] Hubers H W 2008 IEEE J. Sel. Top. Quantum Electron. 142
[12] Ma M R, Chen Y L, Wang L M and Wang C 2008 Chin. Phys. B 175
[13] Sinha D and Amaratunga G A J 2015 Phys. Rev. Lett. 114147701
[14] Boppel S, Ragauskas M, Hajo A, Bauer M, Lisauskas A, Chevtchenko S, Rämer A, Kašalynas I, Valušis G, Würfl H J, Heinrich W, Tränkle G, Krozer V and Roskos H G 2016 IEEE Transactions on Terahertz Science and Technology 6348
[15] Sun J D, Sun Y F, Wu D M, Cai Y, Qin H and Zhang B S 2012 Appl. Phys. Lett. 100013506
[16] Sun J D, Qin H, Lewis R A, Yang X X, Sun Y F, Zhang Z P, Li X X, Zhang X Y, Cai Y, Wu D M and Zhang B S 2015 Appl. Phys. Lett. 106 3
[17] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 1110
[18] Preu S, Kim S, Verma R, Burke P G, Sherwin M S and Gossard A C 2012 J. Appl. Phys. 1112
[19] Dyakonova N, But D B, Coquillat D, Knap W, Drexler C, Olbrich P, Karch J, Schafberger M, Ganichev S D, Ducournau G, Gaquiere C, Poisson M A, Delage S, Cywinski G and Skierbiszewski C 2015 OptoElectronics Review 233
[20] Knap W, Dyakonov M, Coquillat D, Teppe F, Dyakonova N, Łusakowski J, Karpierz K, Sakowicz M, Valusis G, Seliuta D, Kasalynas I, El Fatimy A, Meziani Y and Otsuji T 2009 Journal of Infrared, Millimeter, and Terahertz Waves 3012
[21] Preu S, Kim S, Verma R, Burke P G, Vinh N Q, Sherwin M S and Gossard A C 2012 IEEE Transactions on Terahertz Science and Technology 23
[22] Popov V V, Fateev D V, Otsuji T, Meziani Y M, Coquillat D and Knap W 2011 Appl. Phys. Lett. 9924
[23] Hadi R A, Sherry H, Grzyb J, Zhao Y, Forster W, Keller H M, Cathelin A, Kaiser A and Pfeiffer U R 2012 IEEE Journal of Solid-State Circuits 4712
[24] Ohkawa K, Sakakibara K, Aoki Y, Kikuma N and Hirayama H 2006 Microwave Conference, 2006. APMC 2006. Asia-Pacific. IEEE 1837
[25] Llombart N, Chattopadhyay G, Skalare A and Mehdi I 2011 IEEE Transactions on Antennas and Propagation 596
[26] Sun J D, Qin H, Lewis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M and Zhang B S 2012 Appl. Phys. Lett. 100173513
[1] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[2] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[3] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[4] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[5] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[6] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
[7] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[8] Sub-external cavity effect and elimination method in laser self-mixing interference wave plate measurement system
Haisha Niu(牛海莎), Yanxiong Niu(牛燕雄), Jianjun Song(宋建军). Chin. Phys. B, 2018, 27(2): 024201.
[9] Performance enhancement of CMOS terahertz detector by drain current
Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(9): 098401.
[10] A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates
Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2017, 26(4): 047305.
[11] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
[12] Recessed-gate quasi-enhancement-mode AlGaN/GaN high electron mobility transistors with oxygen plasma treatment
Yun-Long He(何云龙), Chong Wang(王冲), Min-Han Mi(宓珉瀚), Xue-Feng Zheng(郑雪峰), Meng Zhang(张濛), Meng-Di Zhao(赵梦荻), Heng-Shuang Zhang(张恒爽), Li-Xiang Chen(陈立香), Jin-Cheng Zhang(张进成), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(11): 117305.
[13] Growth condition optimization and mobility enhancement throughprolonging the GaN nuclei coalescence process of AlGaN/AlN/GaN structure
He Xiao-Guang, Zhao De-Gang, Jiang De-Sheng, Zhu Jian-Jun, Chen Ping, Liu Zong-Shun, Le Ling-Cong, Yang Jing, Li Xiao-Jing, Zhang Shu-Ming, Yang Hui. Chin. Phys. B, 2015, 24(9): 096802.
[14] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie, Li Ming, Zhao Qian, Gu Wen-Wen, Lau Kei-May. Chin. Phys. B, 2015, 24(8): 087305.
[15] Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression
He Xiao-Guang, Zhao De-Gang, Jiang De-Sheng. Chin. Phys. B, 2015, 24(6): 067301.
No Suggested Reading articles found!