Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116102    DOI: 10.1088/1674-1056/ab43bf
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses

Sheng-Xia Zhang(张胜霞)1, Jie Liu(刘杰)1, Hua Xie(谢华)2, Li-Jun Xu(徐丽君)1,3, Pei-Pei Hu(胡培培)3, Jian Zeng(曾健)1, Zong-Zhen Li(李宗臻)1,3, Li Liu(刘丽)1,3, Wen-Si Ai(艾文思)1,3, Peng-Fei Zhai(翟鹏飞)1
1 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China;
2 Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss (dE/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1×1011 ions/cm2 to 6×1015 ions/cm2. Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1u at 192, 308, and 651 cm-1 appear in Raman spectra, and the F2g band at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with (dE/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with (dE/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1u 651 cm-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore-amorphous transition in pyrochlore irradiated with (dE/dx)e of 39.6 keV/nm.
Keywords:  pyrochlore      heavy ion irradiation      vibrational spectra      phase transition  
Received:  23 July 2019      Revised:  10 September 2019      Published:  05 November 2019
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705246, 11675233, and 11690041) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA316).
Corresponding Authors:  Sheng-Xia Zhang, Jie Liu     E-mail:  zhangsx@impcas.ac.cn;j.liu@impcas.ac.cn

Cite this article: 

Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞) Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses 2019 Chin. Phys. B 28 116102

[35] Long D A 1977 Raman Spectroscopy (New York:McGraw-Hill International Book) p. 65
[1] Pirzada M, Grimes R W, Minervini L, Maguire J F and Sickafus K E 2001 Solid State Ionics 140 201
[36] Arenas D J, Gasparov L V, Qiu W, Nino J C, Patterson Charles H and Tanner D B 2010 Phys. Rev. B 82 214302
[2] Singh D K and Lee Y S 2012 Phys. Rev. Lett. 109 247201
[37] Zhang J, Lang M, Lian J, Liu J, Trautmann C, Della-Negra S, Toulemonde M and Ewing R C 2009 J. Appl. Phys. 105 113510
[3] Pasciak M, Wolcyrz M, Pietraszko A and Leoni S 2010 Phys. Rev. B 81 014107
[38] Shambin J, Tracy C L, Ewing R C, Zhang F X, Li W X, Trautmann C and Lang M 2016 Acta Mater. 117 207
[4] Uno M, Kosuga A, Okui M, Horisaka K and Yamanaka S 2006 J. Alloys Compd. 420 291
[39] Sattonnay G, Grygiel C, Monnet I, Legros C, Herbst-Ghysel M and Thomé L 2012 Acta Mater. 60 22
[5] Zhang A, Lü M, Zhou G, Wang S and Zhou Y 2006 J. Phys. Chem. Solids 67 2430
[6] Subramanian M A, Aravamudan G and Subba Rao G V 1983 Prog. Solid St. Chem. 15 55
[7] Chakoumakos B C 1984 J. Solid State Chem. 53 120
[8] Aidhy D S, Sachan R, Zarkadoula E, Pakarinen O, Chisholm M F, Zhang Y W and Weber W J 2015 Sci. Rep. 5 16297
[9] Du Y F, Cui L J, Li J S, Li R R and Wan F R 2018 Acta Phys. Sin. 67 216101(in Chinese)
[10] Hao Z H, Wang H Y, Zhang Q and Mo Z Q 2018 Acta Phys. Sin. 67 247502(in Chinese)
[11] Wang K, Qi Q, Cheng G J and Shi L Q 2014 Chin. Phys. Lett. 31 072801
[12] Lian J, Wang L M, Wang S X, Chen J, Boatner L A and Ewing R C 2001 Phys. Rev. Lett. 87 145901
[13] Begg B D, Hess N J, McCready D E, Thevuthasan S and Weber W J 2001 J. Nucl. Mater. 289 188
[14] Lian J, Zu X T, Kutty K V G, Chen J, Wang L M and Ewing R C 2002 Phys. Rev. B 66 054108
[15] Lian J, Wang L, Chen J, Sun K, Ewing R C, Farmer J M and Boatner L A 2003 Acta Mater. 51 1493
[16] Sickafus K E, Minervini L, Grimes R W, Valdez J A, Ishimaru M, Li F, McClellan K J and Hartmann T 2000 Science 289 748
[17] Zhang J M, Lang M, Ewing R C, Devanathan R, Weber W J and Toulemonde M 2010 J. Mater. Res. 25 1344
[18] Zhang J W, Lang M, Ewing R C and Becker U 2013 J. Phys.:Condens. Matter. 25 135001
[19] Lang M, Lian J, Zhang J M, Zhang F X, Weber W J, Trautmann C, Neumanna R and Ewing R C 2009 Phys. Rev. B 79 224105
[20] Patel M K, Vijayakumar V, Avasthi D K, Kailas S, Pivin J C, Grover V, Mandal B P and Tyagi A K 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 2898
[21] Zhang F X, Lian J, Becker U, Ewing R C, Wang L M, Hu J Z and Saxena S K 2007 J. Solid State Chem. 180 571
[22] Park S, Lang M, Tracy C L, Zhang J M, Zhang F X, Trautmann C, Rodriguez M D, Kluth P and Ewing R C 2015 Acta Mater. 93 1
[23] Sickafus K E, Grimes R W, Valdez J A, Cleave A, Tang M, Ishimaru M, Corish S M, Stanek C R and Uberuaga B P 2007 Nat. Mater. 6 217
[24] Charties A, Meis C, Weber W J and Corrales L R 2002 Phys. Rev. B 65 134116
[25] Sattonnay G, Moll S, Desbrosses V, Menvie Bekale V, Legros C, Thomé L and Monnet I 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3040
[26] Sattonnay G, Moll S, Herbst-Ghysel M, Legros C, Costantini J M and Thomé L 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3052
[27] Sellami N, Sattonnay G, Grygiel C, Monnet I, Debelle A, Legros C, Menut D, Miro S, Simon P, Bechade J L and Thomé L 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 365 371
[28] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 11
[29] Kong L, Karatchevtseva I, Gregg D J, Blackford M G, Holmes R and Triani G 2013 J. Am. Ceram. Soc. 96 935
[30] Michel D, Jorba M P Y and Collongues R 1976 J. Raman Spectrosc. 5 163
[31] Scheetz B E and White W B 1979 J. Am. Ceram. Soc. 62 468
[32] Vandenborre M T and Husson E 1983 J. Solid State Chem. 50 362
[33] Mandal B P, Krishna P S R and Tyagi A K 2010 J. Solid State Chem. 183 41
[34] Nandi S, Jana Y M and Gupta H C 2018 J. Phys. Chem. Solids 115 347
[35] Long D A 1977 Raman Spectroscopy (New York:McGraw-Hill International Book) p. 65
[36] Arenas D J, Gasparov L V, Qiu W, Nino J C, Patterson Charles H and Tanner D B 2010 Phys. Rev. B 82 214302
[37] Zhang J, Lang M, Lian J, Liu J, Trautmann C, Della-Negra S, Toulemonde M and Ewing R C 2009 J. Appl. Phys. 105 113510
[38] Shambin J, Tracy C L, Ewing R C, Zhang F X, Li W X, Trautmann C and Lang M 2016 Acta Mater. 117 207
[39] Sattonnay G, Grygiel C, Monnet I, Legros C, Herbst-Ghysel M and Thomé L 2012 Acta Mater. 60 22
[1] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[2] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[5] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[6] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[7] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[13] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[14] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[15] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
No Suggested Reading articles found!