Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 108901    DOI: 10.1088/1674-1056/ab3f22
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms

Shi-Zhao Zhu(朱世钊)1, Yu-Qing Wang(王玉青)2, Bing-Hong Wang(汪秉宏)1,3
1 School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China;
3 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  In the field of statistical mechanics and system science, it is acknowledged that the financial crisis has a profound influence on stock market. However, the influence of total asset of enterprise on stock quote was not considered in the previous studies. In this work, a modified cross-correlation matrix that focuses on the influence of total asset on stock quote is introduced into the analysis of the stocks collected from Asian and American stock markets, which is different from the previous studies. The key results are obtained as follows. Firstly, stock is more greatly correlated with big asset than with small asset. Secondly, the higher the correlation coefficient among stocks, the larger the eigenvector is. Thirdly, in different periods, like the pre-subprime crisis period and the peak of subprime crisis period, Asian stock quotes show that the component of the third eigenvector of the cross-correlation matrix decreases with the asset of the enterprise decreasing. Fourthly, by simulating the threshold network, the small network constructed by 10 stocks with large assets can show the large network state constructed by 30 stocks. In this research we intend to fully explain the physical mechanism for understanding the historical correlation between stocks and provide risk control strategies in the future.
Keywords:  complex networks      total assets      subprime crisis      stock correlations  
Received:  04 April 2019      Revised:  15 July 2019      Accepted manuscript online: 
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705042 and 71874172), the China Postdoctoral Science Foundation (Grant Nos. 2018T110040 and 2016M590041), the Fundamental Research Funds for Central Universities, China (Grant No. JZ2018HGTB0238), Curriculum Planning and Design Research Project, China (Grant No. 102-033119), and the Teaching Quality and Teaching Reform Project, China (Grant No. JYQZ1815).
Corresponding Authors:  Yu-Qing Wang, Bing-Hong Wang     E-mail:  yuqingw@hfut.edu.cn;bhwang@ustc.edu.cn

Cite this article: 

Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏) Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms 2019 Chin. Phys. B 28 108901

[43] Brito S, Nunes T C and Silva L R 2019 Phys. Rev. E 99 012305
[1] Hu Z L, Shen Z, Cao S, Podobnik B, Yang H, Wang W X and Lai Y C 2018 Sci. Rep. 8 2685
[44] Kawano Y and Ming C 2019 IEEE Trans. Auto. C 1 1
[2] Yao H, Zhang J W and Di Z R 2010 Physics 39 190 (in Chinese)
[45] Wang D, Jamnik M and Lio P 2018 Inter. Conf. Theo. Appl. Diag. 1 390
[3] Zhou T, Bai W J, Wang B H, Liu Z J and Yan G 2005 Physics 34 31 (in Chinese)
[46] Ruan Z, Wang J, Xuan Q, Fu C and Chen G 2018 Phys. Rev. E 98 022308
[4] Roumen T 2013 Chin. Phys. Lett. 30 088901
[47] Letina S, Blanken T F, Deserno M K and Borsboom D 2019 Complexity 2019 9424605
[5] Zhang A H, L I X W, Su G and Zhang Y 2015 Chin. Phys. Lett. 32 090501
[48] Wen F, Yang X and Zhou W X 2019 Int. J. Financ. Econ. 24 558
[6] Wang C, Xiong W T and Wang Y G 2012 Chin. Phys. Lett. 29 128903
[49] Muscoloni A and Cannistraci C V 2019 Proc. Natl. Acad. Sci. USA 116 1468
[7] Allard A, Hébert-Dufresne L 2019 Phys. Rev. X 9 011023
[50] Luo Y, Ling Z, Cheng Z and Zhou B 2019 Adv. Diff. Equ. 2019 1
[8] Wang Y Q, Wang J X, Li W H, Zhou C F and Jia B 2018 Sci. Rep. 8 16287
[51] Allen F and Gale D 2004 J. Polit. Econ. 2 1015
[9] Wang Y Q, Jiang R and Wu Q S 2017 Nonlinear. Dyn. 88 1631
[52] Jiang X F, Chen T T and Zheng B 2015 Sci. Rep. 4 5321
[10] Wang Y Q, Jia B, Jiang R, Gao Z Y, Li W H, Bao K J and Zheng X Z 2017 Nonlinear. Dyn. 88 2051
[53] Tan L, Chen J J, Zheng B and Ouyang F Y 2016 PloS One 11 0149648
[11] Wang Y Q, Zhou C F, Zhu Z A, Wang J W, Wang Z M, Fang, C H and Jia B 2018 Mod. Phys. Lett. B 32 1850209
[54] Tan L 2015 PloS. One. 10 0118399
[12] Wang Y Q, Chu X J, Zhou C F, Yan B W, Jia B and Fang C H 2018 Mod. Phys. Lett. B 32 1850168
[55] Shen J 2009 Europhys. Lett. 86 48005
[13] Wang Y Q, Yan B W, Zhou C F, Li W K and Jia B 2018 Mod. Phys. Lett. B 32 1850118
[56] Chen J J, Tan L and Zheng B 2015 Sci. Rep. 5 8399
[14] Wang Y Q, Zhou C F, Li W K, Yan B W, Jia B and Wang J X 2018 Mod. Phys. Lett. B 32 1850055
[57] Takaishi T 2016 J. Phys. Conf. Ser. 738 12077
[15] Wang Y Q, Zhou C F, Jia B and Zhu H B 2017 Mod. Phys. Lett. B 31 1750353
[58] Qiu L, Gu C, Xiao Q, Yang H J and Wu G L 2018 Physica A 492 1120
[16] Westbrook A, Tang X and Marshall R 2019 Biotechnol. Bioeng. 116 1139
[59] Mantegna R H 1999 Eur. Phy. J. B 1 193
[60] http://www.yahooo.com
[17] Wang Y Q and Zhang Z H 2019 Mod. Phys. Lett. B 33 1950012
[61] https://en.wikipedia.org/wiki/Historical components of the Dow Jones Industrial Average#September 22.2C
[62] http://www.fortunechina.com/fortune500
[18] Wang Y Q, Chu X J, Zhou C F, Jia B, Lin S, Wu Z H, Zhu H B and Gao Z Y 2017 Mod. Phys. Lett. B 31 1750291
[63] Lee K 2007 Comput. Phys. Commun. 177 186
[19] Wang Y Q, Yan B W, Zhou C F, Chu, X J, Zhang D C, Li W K, Wang J X, Fang C H, Jia B and Gao Z Y 2017 Mod. Phys. Lett. B 31 1750244
[20] Wang Y Q, Zhou C F, Yan B W, Zhang D C, Wang J X, Jia B, Gao Z Y and Wu Q S 2017 Mod. Phys. Lett. B 31 1750104
[21] Wang Y Q, Jiang R, Hu M B and Wu Q S 2014 Comput. Phys. Commun. 185 2823
[22] Wang Y Q, Jiang R, Kolomeisky A B and Hu M B 2014 Sci. Rep. 4 5459
[23] Wang Y Q, Jiang R, Wu Q S and Wu H Y 2014 Mod. Phys. Lett. B 28 1450123
[24] Wang Y Q, Jiang R, Wu Q S and Wu H Y 2014 Mod. Phys. Lett. B 28 1450064
[25] Jiang R, Wang Y Q, Kolomeisky A B, Huang W, Hu M B and Wu Q S 2013 Phys. Rev. E 87 012107
[26] Domenico M and Arenas A 2019 J. Comp. Net. 1 1
[27] Kirkley A, Cantwell G T, Newman M E J 2019 Phys. Rev. E 99 012320
[28] Duan W Q 2012 Chin. Phys. Lett. 29 038903
[29] Yan Y, Liu M X, Zhu X W and Chen X S 2012 Chin. Phys. Lett. 29 028901
[30] Kang L, Xiang B B, Zhai S L, Bao Z K and Zhang H F 2018 Acta Phys. Sin. 67 198901 (in Chinese)
[31] Sun Y F and Wang C Y 2018 Acta Phys. Sin. 67 148901 (in Chinese)
[32] Xiong X and Hu Yong 2012 Acta Phys. Sin. 61 150509 (in Chinese)
[33] Qiu S W, Wang K, Liu Q, Pei W J, Hu H K, Yang G, Wei C J and Zhang Y F 2012 Acta Phys. Sin. 61 150201 (in Chinese)
[34] Hao C Q, Wang J, Deng B and Wei X L 2012 Acta Phys. Sin. 61 148901 (in Chinese)
[35] Pang M B and Huang Y M 2018 Chin. Phys. B 27 118902
[36] Wang X Y, Wang Y, Qin X M, Li R and Eustace J 2018 Chin. Phys. B 27 100504
[37] Ma Y, Lee W M, Meng S and Yuen G J 2018 Chin. Phys. B 27 038901
[38] Zheng Z Q, Qian Y 2018 Chin. Phys. B 27 018901
[39] Liao H, Shen J, Wu X T, Chen B K and Zhou M Y 2017 Chin. Phys. B 26 110505
[40] Pražnikar J, Tomić M and Turk D 2019 Sci. Rep. 9 1678
[41] Irannezhad A I, Esmalifalak H, Esmalifalak M, Behrouz S P and Soltanalizadeh F 2019 J. Behav. F 1 1
[42] Zhang W and Zhuang X 2019 Physica A 515 748
[43] Brito S, Nunes T C and Silva L R 2019 Phys. Rev. E 99 012305
[44] Kawano Y and Ming C 2019 IEEE Trans. Auto. C 1 1
[45] Wang D, Jamnik M and Lio P 2018 Inter. Conf. Theo. Appl. Diag. 1 390
[46] Ruan Z, Wang J, Xuan Q, Fu C and Chen G 2018 Phys. Rev. E 98 022308
[47] Letina S, Blanken T F, Deserno M K and Borsboom D 2019 Complexity 2019 9424605
[48] Wen F, Yang X and Zhou W X 2019 Int. J. Financ. Econ. 24 558
[49] Muscoloni A and Cannistraci C V 2019 Proc. Natl. Acad. Sci. USA 116 1468
[50] Luo Y, Ling Z, Cheng Z and Zhou B 2019 Adv. Diff. Equ. 2019 1
[51] Allen F and Gale D 2004 J. Polit. Econ. 2 1015
[52] Jiang X F, Chen T T and Zheng B 2015 Sci. Rep. 4 5321
[53] Tan L, Chen J J, Zheng B and Ouyang F Y 2016 PloS One 11 0149648
[54] Tan L 2015 PloS. One. 10 0118399
[55] Shen J 2009 Europhys. Lett. 86 48005
[56] Chen J J, Tan L and Zheng B 2015 Sci. Rep. 5 8399
[57] Takaishi T 2016 J. Phys. Conf. Ser. 738 12077
[58] Qiu L, Gu C, Xiao Q, Yang H J and Wu G L 2018 Physica A 492 1120
[59] Mantegna R H 1999 Eur. Phy. J. B 1 193
[60] http://www.yahooo.com
[61] https://en.wikipedia.org/wiki/Historical components of the Dow Jones Industrial Average#September 22.2C
[62] http://www.fortunechina.com/fortune500
[63] Lee K 2007 Comput. Phys. Commun. 177 186
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[14] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[15] Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks
Zhi-gang Zheng(郑志刚), Yu Qian(钱郁). Chin. Phys. B, 2018, 27(1): 018901.
No Suggested Reading articles found!