Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 103102    DOI: 10.1088/1674-1056/ab3da2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study

Kang Yang(杨康)1,2, Liang Yang(杨亮)1,2, Chang-Zhi Ai(艾长智)1,2, Zhao Wang(王赵)3, Shi-Wei Lin(林仕伟)1,2
1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
2 School of Materials Science and Engineering, Hainan University, Haikou 570228, China;
3 School of Science, Hainan University, Haikou 570228, China
Abstract  The elastic properties of anatase nanotubes are investigated by molecular dynamics (MD) simulations. Young's modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The calculated elastic constants of bulk rutile, anatase, and Young's modulus of nanotube are in good agreement with experimental values, respectively, demonstrating that the Matsui and Akaogi (MA) potential function used in the simulation can accurately present the elastic properties of anatase titanium dioxide nanotubes. For single wall anatase titanium dioxide nanotube, the elastic moduli are shown to be sensitive to structural details such as the chirality and radius. For different chirality nanotubes with the same radius, the elastic constants are not proportional to the chiral angle. The elastic properties of the nanotubes with the chiral angle of 0° are worse than those of other chiral nanotubes. For nanotubes with the same chirality but different radii, the elastic constant, Young's modulus, and shear modulus decrease as the radius increases. But there exist maximal values in a radius range of 10 nm-15 nm. Such information can not only provide a deep understanding of the influence of geometrical structure on nanotubes mechanical properties, but also present important guidance to optimize the composite behavior by using nanotubes as the addition.
Keywords:  molecular dynamics      elastic properties      TiO2 nanotube      chiral angle      radius  
Received:  11 July 2019      Revised:  21 August 2019      Published:  05 October 2019
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  62.20.D- (Elasticity)  
  81.07.De (Nanotubes)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Key Research and Development Program of Hainan Province, China (Grant No. ZDYF2017098) and the Hainan Provincial Natural Science Foundation, China (Grant No. 519MS025).
Corresponding Authors:  Liang Yang, Shi-Wei Lin     E-mail:  yl5923@hainanu.edu.cn;linsw@hainanu.edu.cn

Cite this article: 

Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟) Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study 2019 Chin. Phys. B 28 103102

[37] Lekhnitsuii S G 1981 Theory of elasticity of an anisotropic elastic body (Moscow: Mir Publishers)
[1] Huang J, Cao Y, Deng Z and Tong H 2011 J. Solid State Chem. 184 712
[38] Swamy V, Gale J D and Dubrovinsky L S 2001 J. Phys. Chem. Solids 62 887
[2] Abdullah N and Kamarudin S K 2015 J. Power Sources 278 109
[39] Zeydabadi-Nejad I, Zolfaghari N, Mosavi-Mashhadi M and Baniassadi M 2019 Comput. Mater. Sci. 158 307
[3] Li H, Liu S, Wang X, Zu G, Li D, Wang J and Zhao J 2019 Sustainable Mater. Technol. 20 e00093
[40] Koparde V N and Cummings P T 2007 J. Phys. Chem. C 111 6920
[4] Chen K, Feng X, Hu R, Li Y, Xie K, Li Y and Gu H 2013 J. Alloys Compd. 554 72
[41] Mashreghi A 2012 Comput. Mater. Sci. 62 60
[5] Li T, Luo S, Luo Y and Yang L 2016 Mater. Lett. 180 130
[42] Shokuhfar T, Arumugam G K, Heiden P A, Yassar R S and Friedrich C 2009 ACS Nano 3 3098
[6] Chen S, Ostrom C and Chen A 2013 Int. J. Hydrogen Energy 38 14002
[43] Crawford G A, Chawla N, Das K, Bose S and Bandyopadhyay A 2007 Acta Biomater. 3 359
[7] Kim J H, Zhu K, Kim J Y and Frank A J 2013 Electrochim. Acta 88 123
[8] Chen K, Xie K, Feng X, Wang S, Hu R, Gu H and Li Y 2012 Int. J. Hydrogen Energy 37 13602
[9] Zhao R, Xu M, Wang J and Chen G 2010 Electrochim. Acta 55 5647
[10] Karaman M, Sarıipek F, Köysüren Ö and YıldıZ H B 2013 Appl. Surf. Sci. 283 993
[11] Jang N S, Kim M S, Kim S H, Lee S K and Kim J M 2014 Sens. Actuators B: Chem. 199 361
[12] Ranjitha A, Muthukumarasamy N, Thambidurai M, Velauthapillai D, Agilan S and Balasundaraprabhu R 2015 Optik 126 2491
[13] Arruda L B, Santos C M, Orlandi M O, Schreiner W H and Lisboa-Filho P N 2015 Ceram. Int. 41 2884
[14] Sun Y Y, Zong Z M, Li Z K and Wei X Y 2018 Ceram. Int. 44 3501
[15] Liu Z, Liu C, Ya J and Lei E 2011 Renewable Energy 36 1177
[16] Hosseini M, Momeni M M and Faraji M 2011 J. Mol. Catal. A: Chem. 335 199
[17] He H, Xiao P, Zhou M, Zhang Y, Lou Q and Dong X 2012 Int. J. Hydrogen Energy 37 4967
[18] Bjursten L M, Rasmusson L, Oh S, Smith G C, Brammer K S and Jin S 2010 J. Biomed. Mater. Res. Part. A 92A 1218
[19] El Saeed A M, Fattah M A E and Dardir M M 2015 Prog. Org. Coat. 78 83
[20] Zaeri M M, Ziaei-Rad S and Shahidi A R 2015 Procedia Mater. Sci. 11 666
[21] Aghadavoudi F, Golestanian H and Tadi Beni Y 2018 Polym. Compos. 39 4513
[22] Lu J P 1997 Phys. Rev. Lett. 79 1297
[23] Yao H, Ouyang L and Ching W Y 2007 J. Am. Ceram. Soc. 90 3194
[24] Iuga M, Steinle-Neumann G and Meinhardt J 2007 Eur. Phys. J. B 58 127
[25] Isaak D G, Carnes J D, Anderson O L, Cynn H and Hake E 1998 Phys. Chem. Miner. 26 31
[26] Wang Y J, C J, T A N L N and C X R 2007 Chin. Phys. Lett. 24 2642
[27] Hearmon R F S 1984 Elastic Constants Crystals Other Anisotropic Materials (Landolt-Bornstein Tables, Ⅲ/18) p. 1154
[28] Wang Y Q, Hu G Q, Duan X F, Sun H L and Xue Q K 2002 Chem. Phys. Lett. 365 427
[29] Evarestov R A, Bandura A V, Losev M V, Piskunov S and Zhukovskii Y F 2010 Physica E: Low-dimensional Syst. Nanostruct. 43 266
[30] Plimpton S 1995 J. Comput. Phys. 117 1
[31] Matsui M and Akaogi M 1991 MoSim 6 239
[32] Chen X, Zhang J and Zhao Y Q 2017 Appl. Surf. Sci. 404 409
[33] Nosé S 1984 Mol. Phys. 52 255
[34] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[35] Sadd M H 2009 Elasticity: theory, applications, and numerics (New York: Academic Press)
[36] Lubarda V and Chen M 2008 J. Mech. Mater. Struct. 3 153
[37] Lekhnitsuii S G 1981 Theory of elasticity of an anisotropic elastic body (Moscow: Mir Publishers)
[38] Swamy V, Gale J D and Dubrovinsky L S 2001 J. Phys. Chem. Solids 62 887
[39] Zeydabadi-Nejad I, Zolfaghari N, Mosavi-Mashhadi M and Baniassadi M 2019 Comput. Mater. Sci. 158 307
[40] Koparde V N and Cummings P T 2007 J. Phys. Chem. C 111 6920
[41] Mashreghi A 2012 Comput. Mater. Sci. 62 60
[42] Shokuhfar T, Arumugam G K, Heiden P A, Yassar R S and Friedrich C 2009 ACS Nano 3 3098
[43] Crawford G A, Chawla N, Das K, Bose S and Bandyopadhyay A 2007 Acta Biomater. 3 359
[1] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[2] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[3] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[4] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[5] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[8] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[9] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[10] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[11] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[12] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
[13] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[14] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[15] Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica
Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(2): 027101.
No Suggested Reading articles found!