Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107101    DOI: 10.1088/1674-1056/ab3b53
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic properties of size-dependent MoTe2/WTe2 heterostructure

Jing Liu(刘婧)1, Ya-Qiang Ma(马亚强)1, Ya-Wei Dai(戴雅薇)2, Yang Chen(陈炀)1, Yi Li(李依)1, Ya-Nan Tang(唐亚楠)3, Xian-Qi Dai(戴宪起)1
1 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2 Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
3 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
Abstract  

Lateral two-dimensional (2D) heterostructures have opened up unprecedented opportunities in modern electronic device and material science. In this work, electronic properties of size-dependent MoTe2/WTe2 lateral heterostructures (LHSs) are investigated through the first-principles density functional calculations. The constructed periodic multi-interfaces patterns can also be defined as superlattice structures. Consequently, the direct band gap character remains in all considered LHSs without any external modulation, while the gap size changes within little difference range with the building blocks increasing due to the perfect lattice matching. The location of the conduction band minimum (CBM) and the valence band maximum (VBM) will change from P-point to Γ-point when m plus n is a multiple of 3 for A-mn LHSs as a result of Brillouin zone folding. The bandgap located at high symmetry Γ-point is favourable to electron transition, which might be useful to optoelectronic device and could be achieved by band engineering. Type-Ⅱ band alignment occurs in the MoTe2/WTe2 LHSs, for electrons and holes are separated on the opposite domains, which would reduce the recombination rate of the charge carriers and facilitate the quantum efficiency. Moreover, external biaxial strain leads to efficient bandgap engineering. MoTe2/WTe2 LHSs could serve as potential candidate materials for next-generation electronic devices.

Keywords:  first-principles calculations      electronic structures      MoTe2/WTe2 superlattice      strain effects  
Received:  01 May 2019      Revised:  03 August 2019      Published:  05 October 2019
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61674053 and 11881240254), the Natural Science Foundation of Henan Province, China (Grant No. 162300410325), the Key Young Teachers of Henan Province, China (Grant No. 2017GGJS179), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030).

Corresponding Authors:  Ya-Qiang Ma, Xian-Qi Dai     E-mail:  mayaqiang@htu.edu.cn;xqdai@htu.edu.cn

Cite this article: 

Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起) Electronic properties of size-dependent MoTe2/WTe2 heterostructure 2019 Chin. Phys. B 28 107101

[41] Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z and Tang W 2018 Carbon 129 738
[1] Modarresi M, Mogulkoc A, Mogulkoc Y and Rudenko 2019 Phys. Rev. Appl. 11 064015
[42] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[2] Lim H, Yoon S I, Kim G, Jang A and Shin H S 2014 Chem. Mater. 26 4891
[43] Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L and Huang B 2016 2D Mater. 3 035017
[3] Müller A, Şahin C, Minhas M Z, Fuhrmann B, Flatté M E and Schmidt G 2019 Phys. Rev. Appl. 11 064026
[44] Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Nanoscale 5 8326
[4] Yang N, Chen X and Wang Y 2018 Acta Phys. Sin. 67 157508 (in Chinese)
[45] Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439
[5] Huang C, Wu S, Sanchez A M, Peters J, Beanl, R, Ross J S, Rivera P, Yao W, Cobden D H and Xu X 2014 Nat. Mater. 13 1096
[46] Wang G, Lin Y, Zhao Y, Jiang Z and Zhang X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
[6] Sun Q, Dai Y, Yin N, Yu L, Ma Y, Wei W and Huang B 2017 Nano Res. 10 3909
[47] Luo K, Chen S Y and Duan C G 2015 Sci. China-Phys. Mech. Astron. 58 087301
[7] Chhowalla M, Shin H S, Eda G, Li L, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[48] Wei W, Dai Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 663
[8] Zong X, Yan H, Wu G, Ma G, Wen F, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
[49] Liu J, Ma Y, Zhao M, Li Y, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
[9] Shi Y, Li H and Li L J 2015 Chem. Soc. Rev. 44 2744
[10] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Bol, J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, Mccomb D W, Nellist P D and Nicolosi V 2011 Science 331 568
[11] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[12] Yang D and Frindt R F 1996 J. Phys. Chem. Solids 57 1113
[13] Geim A K and Grigorieva I V 2013 Nature 499 419
[14] Tan C and Zhang H 2015 J. Am. Chem. Soc. 137 12162
[15] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627
[16] Han G H, Rodríguez-manzo J A, Lee C W, Kybert N J, Lerner M B, Qi Z J, Dattoli E N, Rappe A M, Drndic M and Johnson A T C 2013 ACS Nano 7 10129
[17] Miyata Y, Maeda E, Kamon K, Kitaura R, Sasaki, Suzuki S and Shinohara H 2010 Mater. Sci. Eng. B 174 257
[18] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu, X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y and Duan X 2014 Nat. Nanotechnol. 9 1024
[19] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524
[20] Duesberg G S 2014 Nat. Mater. 13 1075
[21] Selcuk S and Selloni A 2016 Nat. Mater. 15 1107
[22] Yu J, Low J, Xiao W, Zhou P and Jaroniec M 2014 J. Am. Chem. Soc. 136 8839
[23] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[24] Jariwala D, Sangwan V K, Lauhon L J Marks T J and Hersam M C 2014 ACS Nano 8 1102
[25] Dawson W G and Bullett D W 1987 J. Phys. C: Solid State Phys. 20 6159
[26] Huang H, Fan X, Singh D J, Chen H, Jiang Q and Zheng W 2016 Phys. Chem. Chem. Phys. 18 4086
[27] C S K, Zhang C, Hong S, Wallace R M and Cho K 2015 2D Mater. 2 035019
[28] Zhu C, Sun X, Liu H, Zheng B, Wang X, Liu Y, Zubair M, Wang X, Zhu X, Li D and Pan A 2019 ACS Nano 13 7216
[29] Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
[30] Wei W, Dai Y, Sun Q, Yin N, Han S, Huang B and Jacob T 2015 Phys. Chem. Chem. Phys. 17 29380
[31] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[32] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[33] Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Pack J D and Monkhorst H J 1976 Phys. Rev. B 13 5188
[39] Wang T G, Tang G, Rubel O 2014 VASPKIT, a pre- and post-processing program for the VASP code
[40] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[41] Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z and Tang W 2018 Carbon 129 738
[42] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[43] Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L and Huang B 2016 2D Mater. 3 035017
[44] Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Nanoscale 5 8326
[45] Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439
[46] Wang G, Lin Y, Zhao Y, Jiang Z and Zhang X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
[47] Luo K, Chen S Y and Duan C G 2015 Sci. China-Phys. Mech. Astron. 58 087301
[48] Wei W, Dai Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 663
[49] Liu J, Ma Y, Zhao M, Li Y, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
[1] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[2] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[7] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[8] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[9] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[10] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[11] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[12] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[13] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[14] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[15] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
No Suggested Reading articles found!