We investigate the sensitivity of phase estimation in a Mach-Zehnder interferometer with photon-subtracted two-mode squeezed vacuum states. Our results show that, for given initial squeezing parameter, both symmetric and asymmetric photon subtractions can further improve the quantum Cramér-Rao bound (i.e., the ultimate phase sensitivity), especially for single-mode photon subtraction. On the other hand, the quantum Cramér-Rao bound can be reached by parity detection for symmetric photon-subtracted two-mode squeezed vacuum states at particular values of the phase shift, but it is not valid for asymmetric photon-subtracted two-mode squeezed vacuum states. In addition, compared with the two-mode squeezed vacuum state, the phase sensitivity via parity detection with asymmetric photon-subtracted two-mode squeezed vacuum states will be getting worse. Thus, parity detection may not always be the optimal detection scheme for nonclassical states of light when they are considered as the interferometer states.

(Foundations of quantum mechanics; measurement theory)

Fund:

Project supported by the National Natural Science Foundation of China (Grant No. 11404040) and the Qing Lan Project of the Higher Educations of Jiangsu Province of China.

Corresponding Authors:
Shuai Wang
E-mail: wshslxy@jsut.edu.cn

Cite this article:

Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅) Quantum optical interferometry via general photon-subtracted two-mode squeezed states 2019 Chin. Phys. B 28 094217

[39]

Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833

[1]

Caves C M 1981 Phys. Rev. D 23 1693

[40]

Cohen L, Istrati D, Dovrat L and Eisenber H S 2014 Opt. Express 22 11945

[2]

Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601

[41]

Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563

[3]

Ou Z Y 1996 Phys. Rev. Lett. 77 2352

[42]

Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955

[4]

Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355

[43]

Eberle T, Händchen V and Schnabel R 2013 Opt. Express 21 11546

[5]

Gerry C C and Mimih J 2010 Contemp. Phys. 51 497

[44]

Stephen M B, Gergely F, Claire R G and Fiona C S 2018 Phys. Rev. A 98 013809

[6]

Campos R A, Gerry C C and Benmoussa A 2003 Phys. Rev. A 68 023810

[45]

Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag, 2001), Appendix A

[7]

Dowling J P 2008 Contemp. Phys. 49 125

[8]

Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601

[9]

Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601

[10]

Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602

[11]

Seshadreesan K P, Anisimov P M, Lee L and Dowling J P 2011 New J. Phys. 13 083026

[12]

Zhang Y M, Li X W and Jin G R 2013 Chin. Phys. B 22 114206

[13]

Sun H X, Liu K, Zhang J X and Gao J R 2015 Acta Phys. Sin. 64 234210(in Chinese)

[14]

Yu X D, Li W, Zhu S Y and Zhang J 2016 Chin. Phys. B 25 020304

[15]

Huang Z X, Motes K R, Anisimov P M, Dowling J P and Berry D W 2017 Phys. Rev. A 95 053837

[16]

Wang S, Wu S C and Sui Y X 2018 Journal of Liaocheng University (Natural Science Eidtion) 31 77(in Chinese)

[17]

Dell' Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53

[18]

Kim M S 2008 J. Phys. B:At. Mol. Opt. Phys. 41 133001

[19]

Wang S, Hou L L, Chen X F and Xu X F 2015 Phys. Rev. A 91 063832

[20]

Liao Q, Guo Y, Huang D, Huang P and Zeng G H 2018 New. J. Phys. 20 023015

[21]

Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327

[22]

Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581

[23]

Birrittella R and Gerry C C 2014 J. Opt. Soc. Am. B 31 586

[24]

Tan Q S, Liao J Q, Wang X G and Nori F 2014 Phys. Rev. A 89 053822

[25]

Gong Q K, Hu X L, Li D, Yuan C H, Ou Z Y and Zhang W 2017 Phys. Rev. A 96 033809

[26]

Guo L L, Yu Y F and Zhang Z M 2018 Opt. Express 26 29099

[27]

Ouyang Y, Wang S and Zhang L 2016 J. Opt. Soc. Am. B 33 1373

[28]

Wang S, Xu X X, Xu Y J and Zhang L J 2019 Opt. Communn. 444 102

[29]

León-Montiel R de J, Magaña-Loaiza O S, Perez-Leija A, U'Ren A, Busch K, Lita A E, Nam S W, Gerrits T and Mirin R R 2018 Frontiers in Optics/Laser Science LM1B.6

[30]

Magaña-Loaiza O S, León-Montiel R de J, Perez-Leija A, U'Ren A B, You C, Busch K, Lita A E, Nam S W, Mirin R R and Gerrits T 2019 axXiv:1901.00122

[31]

Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T and Silberhorn C 2016 Phys. Rev. Lett. 116 143601

[32]

Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286

[33]

Agarwal G S and Tara K 1991 Phys. Rev. A 43 492

[34]

Zavatta A, Viciani S and Bellini M 2004 Science 306 660

[35]

Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601

[36]

Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033

[37]

Helstrom C W 1976 Quantum Detection and Estimation Theory (New York:Academic Press)

[38]

Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754

[39]

Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833

[40]

Cohen L, Istrati D, Dovrat L and Eisenber H S 2014 Opt. Express 22 11945

[41]

Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563

[42]

Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955

[43]

Eberle T, Händchen V and Schnabel R 2013 Opt. Express 21 11546

[44]

Stephen M B, Gergely F, Claire R G and Fiona C S 2018 Phys. Rev. A 98 013809

[45]

Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag, 2001), Appendix A

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.