Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 096402    DOI: 10.1088/1674-1056/ab37f8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural transitions in NaNH2 via recrystallization under high pressure

Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田)
College of Physics, State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Multiple phase transitions are detected in sodium amide (NaNH2), an important hydrogen storage material, upon compression in diamond anvil cells (DAC) by using Raman spectroscopy and x-ray diffraction (XRD) measurements. Additional Bragg reflections appear on lower and higher angle sides of the original ones at~1.07 GPa and 1.84 GPa, accompanied by obvious changes in Raman spectroscopy, respectively. It reveals that NaNH2 undergoes the high-pressure phase sequence (α-β-γ) up to 20 GPa at room temperature. Spectral analysis indicates an orthorhombic structure with PBAN space group for the γ phase. We also experimentally observe high pressure induced recrystallization in alkaline amide compounds for the first time.

Keywords:  high pressure      sodium amide      phase transition      recrystallization  
Received:  28 May 2019      Revised:  10 July 2019      Published:  05 September 2019
PACS:  64.60.-i (General studies of phase transitions)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  61.05.cp (X-ray diffraction)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305900 and 2016YFB0201204), the National Natural Science Foundation of China (Grant Nos. 51632002, 51572108, 11504127, 91745203, and 11634004), Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_15R23), and National Fund for Fostering Talents of Basic Science, China (Grant No. J1103202).

Corresponding Authors:  Yanping Huang, Xiaoli Haung, Xin Wang     E-mail:  huangyp1124@jlu.edu.cn;huangxiaoli@jlu.edu.cn;huangxiaoli@jlu.edu.cn

Cite this article: 

Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田) Structural transitions in NaNH2 via recrystallization under high pressure 2019 Chin. Phys. B 28 096402

[1] Mujica A, Rubio A, Muñoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[2] Hemley R J and Ashcroft N W 1998 Phys. Today 51 26
[3] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
[4] Parise J B 2006 Rev. Mineral. Geochem. 63 205
[5] Stoffler D 1997 Science 278 1576
[6] Williams Q and Hemley R J 2001 Annu. Rev. Earth Pl. Sc 29 365
[7] Mao H K, Chen X J, Yang D, Li B and Wang L 2018 Rev. Mod. Phys. 90 15007
[8] Song T, Sun X W, Wei X P, Ouyang Y H, Zhang C L, Guo P and Zhao W 2019 Acta Phys. Sin. 68 126201(in Chinese)
[9] Sun J P, Prashant S, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X and Cheng J G 2018 Acta Phys. Sin. 67 207404(in Chinese)
[10] Vajeeston P, Ravindran P, Vidya R, Fjellvåg H and Kjekshus A 2003 Phys. Rev. B 68 212101
[11] Ichikawa T, Isobe S and Kristallogr Z 2008 Z. Kristallogr 223 660
[12] Xiong Z T, Hu J J, Wu G T, Liu Y F and Chen P 2007 Catal. Today 120 287
[13] Sheppard D A, Paskevicius M and Buckley C E 2011 J. Phys. Chem. C 115 8407
[14] Zhang Y and Tian Q 2011 Int. J. Hydrogen Energy 36 9733
[15] Juza R, Weber H H and Opp K Z 1956 Anorg. Allg. Chem. 284 73
[16] Nagib M, Kistrup H and Jacobs H 1975 Atomkernenergie 26 87
[17] Zalkin A and Templeton D H 1956 J. Phys. Chem. 60 821
[18] Liu A and Song Y 2011 J. Phys. Chem. B 115 7
[19] Zhong Y, Zhou H Y, Hu C H, Wang D H and A Oganov A R 2012 J. Phys. Chem. C 116 8387
[20] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[21] Hammersley A P, Svensson S O, Hanfl, M, Fitch A N and Häussermann D 1996 High Press. Res. 14 235
[22] Jiao S H, Pang G S, Liang H W, Chen Y and Feng S H 2007 J. Nanopart. Res. 9 605
[23] Cunningham P T and Maroni V A 1972 J. Chem. Phys. 57 1415
[24] Chellappa R S and Chandra D 2007 J. Phys. Chem. B 111 10785
[25] Boultif A and Louer D 2004 J. Appl. Cryst. 37 724
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[6] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[7] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[8] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[11] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[15] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
No Suggested Reading articles found!