Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094206    DOI: 10.1088/1674-1056/ab3279
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering

Zhe Liu(刘喆)1, Bo Yang(杨博)1,2, Hong-Liang Zhao(赵洪亮)3, Zhan-Long Li(李占龙)1, Zhi-Wei Men(门志伟)1, Xiao-Feng Wang(王晓峰)1, Ning Wang(王宁)1, Xian-Wen Cao(曹献文)1, Sheng-Han Wang(汪胜晗)1,2, Cheng-Lin Sun(孙成林)1,2
1 Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), College of Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
3 College of Aviation Foundation, Aviation University of Air Force, Changchun 130000, China
Abstract  

The acetic acid-water binary system is a classical hydroxy-carboxy mixed system, while new and interesting phenomena appear under stimulated Raman scattering (SRS). Compared with the weaker signal of the acetic acid-water binary system obtained in spontaneous Raman scattering, SRS provides a finer band and a relatively distinct structural transition point. The structural transformation points are respectively at 30% and 80% by volume ratio under the condition of spontaneous Raman spectroscopy, while they are respectively at 15% and 25% under the condition of SRS. This phenomenon is attributed to the generation of laser induced plasma and shockwave induced dynamic high pressure environment during SRS.

Keywords:  stimulated Raman scattering      water-acetic acid      laser induced plasma      dynamic high pressure  
Received:  20 March 2019      Revised:  20 May 2019      Published:  05 September 2019
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574113, 11374123, and 11104106), Science and Technology Planning Project of Jilin Province, China (Grant Nos. 20180101238JC, 20170204076GX, 20180101006JC, 20190103041JH, and 20190201260JC), and Post-Doctoral Innovative Talent Support Program, China (Grant Nos. BX20180127 and 2019M651192).

Corresponding Authors:  Sheng-Han Wang, Cheng-Lin Sun     E-mail:  shenghan@jlu.edu.cn;chenglin@jlu.edu.cn

Cite this article: 

Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林) Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering 2019 Chin. Phys. B 28 094206

[40] Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C and Hu B T 2013 Acta Phys. Sin. 62 045201(in Chinese)
[1] Smith G 2015 Acta Crystallogr. Sect. C-Struct. Chem. 71 140
[2] Khedr M A, Shehata T M and Mohamed M E 2014 Eur. J. Pharm. Sci. 65 130
[3] Fukami H, Tachimoto H, Kishi M, Kaga T and Tanaka Y 2010 J. Agric. Food Chem. 58 4084
[4] de Vlieger D J M, Lefferts L and Seshan K 2014 Green Chem. 16 864
[5] Essel T Y A, Koomson A, Seniagya M O, Cobbold G P, Kwofie S K, Asimeng B O, Arthur P K, Awandare G and Tiburu E K 2018 Polymer 10 466
[6] Park J M, Laio A, Iannuzzi M and Parrinello M 2006 J. Am. Chem. Soc. 128 11318
[7] Yeom C K and Lee K H 1996 J. Membr. Sci. 109 257
[8] Alghezawi N, ŞanlıO, Aras L and Asman G 2005 Chem. Eng. Process. 44 51
[9] Pu L, Sun Y M and Zhang Z B 2009 J. Phys. Chem. A 113 6841
[10] Pu L, Sun Y M and Zhang Z B 2010 J. Mol. Liq. 154 124
[11] Dreyer J 2005 J. Chem. Phys. 122 184306
[12] Heyne K, Huse N, Dreyer J, Nibbering E T J, Elsaesser T and Mukamel S 2004 J. Chem. Phys. 121 902
[13] D'Amico F, Bencivenga F, Gessini A and Masciovecchio C J 2010 Phys. Chem. B 114 10628
[14] Nishi N, Nakabayashi T and Kosugi K 1999 J. Phys. Chem. A 103 10851
[15] Heisler I A, Mazur K, Yamaguchi S, Tominaga K and Meech S R 2011 Phys. Chem. Chem. Phys. 13 15573
[16] Jakobsen R J, Mikawa Y and Brasch J W 1967 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 23 2199
[17] Wu J P 2014 Phys. Chem. Chem. Phys. 16 22458
[18] Fang W H, Li Z W, Sun C L, Li Z L, Song W, Men Z W and He L Q 2012 Chin. Phys. B 21 034211
[19] Zuo Y L, Wei X F, Zhou K N, Zeng X M, Su J Q, Jiao Z H, Xie Na and Wu Z H 2016 Chin. Phys. B 25 035203
[20] Briggs J M, Nguyen T B and Jorgensen W L 1991 J. Phys. Chem. 95 3315
[21] Wang S H, Li Z L, Sun C L, Li Z W and Men Z W 2014 Acta Phys. Sin. 63 205204(in Chinese)
[22] Yuan H, Gai B D, Liu J B, Guo J W, Li H, Hu S, Deng L Z, Jin Y Q and Sang F T 2016 Opt. Lett. 41 3335
[23] Kumar V R and Kiran P P 2015 Opt. Lett. 40 2802
[24] Hafizi B, Palastro J P, Peñano J R, Gordon D F, Jones T G, Helle M H and Kaganovich D 2015 Opt. Lett. 40 1556
[25] Wang S H, Fang W H, Li F B, Gong N, Li Z L, Li Z W, Sun C L and Men Z W 2017 Opt. Express 25 31670
[26] Li Z L, Wang Y D, Zhou M, Men Z W, Sun C L and Li Z W 2012 Acta Phys. Sin. 61 064217(in Chinese)
[27] Murphy W F and Bernstein H J 1972 J. Phys. Chem. 76 1147
[28] Johnson C M, Tyrode E, Baldelli S, Rutl, M W and Leygraf C 2005 J. Phys. Chem. B 109 321
[29] Génin F, Quilés F and Burneau A 2001 Phys. Chem. Chem. Phys. 3 932
[30] Semmler J and Irish D E 1988 J. Solut. Chem. 17 805
[31] Ng J B and Shurvell H F 1987 J. Phys. Chem. 91 496
[32] Chocholoušová J, Vacek J and Hobza P 2003 J. Phys. Chem. A 107 3086
[33] D'Amico F, Bencivenga F, Gessini A, Principi E, Cucini R and Masciovecchio C 2012 J. Phys. Chem. B 116 13219
[34] Han C Q, Liu Y, Yang Y, Ni X W, Lu J and Luo X S 2009 Chin. Opt. Lett. 7 357
[35] Lütgens M, Friedriszik F and Lochbrunner S 2014 Phys. Chem. Chem. Phys. 16 18010
[36] White J C 1987 Tunable Lasers (Berlin:Springer) pp. 115-207
[37] Shi J L, Xu J, Luo N N, Wang Q, Zhang Y B, Zhang W W and He X D 2019 Acta Phys. Sin. 68 044201(in Chinese)
[38] Graener H, Seifert G and Laubereau A 1991 Phys. Rev. Lett. 66 2092
[39] Yui H, Kato H and Someya Y 2008 J. Raman Spectrosc. 39 1688
[40] Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C and Hu B T 2013 Acta Phys. Sin. 62 045201(in Chinese)
[1] Raman gains of ADP and KDP crystals
Zhou Hai-Liang, Zhang Qing-Hua, Wang Bo, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhang Fang, Zhang Li-Song, Liu Bao-An, Chai Xiang-Xu. Chin. Phys. B, 2015, 24(4): 044206.
[2] Analytical model of signal amplification in silicon waveguides
Meng Fan, Yu Chong-Xiu, Yuan Jin-Hui. Chin. Phys. B, 2012, 21(7): 074207.
[3] Nonlinear performances of dual-pump amplifiers in silicon waveguides
Meng Fan,Yu Chong-Xiu,Deng Yun-Yi,Yuan Jin-Hui. Chin. Phys. B, 2012, 21(4): 044202.
[4] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei, Fang Wen-Hui, Li Zuo-Wei, Qu Guan-Nan, Gao Shu-Qin, Lu Guo-Hui, Yang Jian-Ge, Sun Cheng-Lin. Chin. Phys. B, 2010, 19(8): 084206.
[5] Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype
Li Zhi-Chao, Zheng Jian, Ding Yong-Kun, Yin Qiang, Jiang Xiao-Hua, Li San-Wei, Guo Liang, Yang Dong, Wang Zhe-Bin, Zhang Huan, Liu Yong-Gang, Zhan Xia-Yu, Tang Qi. Chin. Phys. B, 2010, 19(12): 125202.
[6] Stimulated Raman scattering instability in partially ionized laser-plasma
Zhang Jia-Tai. Chin. Phys. B, 2005, 14(1): 169-171.
[7] Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm
Xu Ben, Yue Gu-Ming, Zhang Yin-Chao, Hu Huan-Ling, Zhou Jun, Hu Shun-Xing. Chin. Phys. B, 2003, 12(9): 1021-1025.
No Suggested Reading articles found!