Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077103    DOI: 10.1088/1674-1056/28/7/077103
RAPID COMMUNICATION Prev   Next  

Possible nodeless s±-wave superconductivity in twisted bilayer graphene

Zhe Liu(刘哲)1, Yu Li(李宇)1,2, Yi-Feng Yang(杨义峰)1,2,3,4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

The recent discovery of superconductivity in the twisted bilayer graphene has stimulated numerous theoretical proposals concerning its exact gap symmetry. Among them, the d+ id or p+ ip-wave was believed to be the most plausible solution. Here, considering that the superconductivity emerges near a correlated insulating state and may be induced by antiferromagnetic spin fluctuations, we apply the strong-coupling Eliashberg theory with both inter- and intraband quantum critical pairing interactions and discuss the possible gap symmetry in an effective low-energy four-orbital model. Our calculations reveal a nodeless s±-wave as the most probable candidate for the superconducting gap symmetry in the experimentally relevant parameter range. This solution is distinctly different from previous theoretical proposals. It highlights the multi-gap nature of the superconductivity and puts the twisted bilayer graphene in the same class as the iron-pnictide, electron-doped cuprate, and some heavy fermion superconductors.

Keywords:  twisted bilayer graphene      superconductivity  
Received:  06 May 2019      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.70.Tx (Heavy-fermion superconductors)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 11774401 and 11522435), the State Key Development Program for Basic Research of China (Grant No. 2015CB921303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Corresponding Authors:  Yi-Feng Yang     E-mail:  yifeng@iphy.ac.cn

Cite this article: 

Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰) Possible nodeless s±-wave superconductivity in twisted bilayer graphene 2019 Chin. Phys. B 28 077103

[34] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[35] Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[36] Zhang L 2019 Sci. Bull. 64 495
[3] Latil S, Meunier V and Henrard L 2007 Phys. Rev. B 76 201402(R)
[37] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001
[4] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[38] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103
[5] Mele E J 2010 Phys. Rev. B 81 161405(R)
[39] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154
[6] Bistritzer R and MacDonald A H 2010 Phys. Rev. B 81 245412
[7] Suárez Morell E, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407(R)
[40] Wu X C, Pawlak K A, Jian C M and Xu C 2018 arXiv:1805.06906v1 [cond-mat.str-el]
[8] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802
[41] Ochi M, Koshino M and Kuroki K 2018 Phys. Rev. B 98 081102(R)
[9] Moon P and Koshino M 2012 Phys. Rev. B 85 195458
[42] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[10] Trambly de Laissardi'ere G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413
[43] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[11] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2012 Phys. Rev. B 86 155449
[44] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435
[12] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardi'ere G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[45] Kang J and Vafek O 2018 Phys. Rev. X 8 031088
[13] González J 2013 Phys. Rev. B 88 125434
[14] Uchida K, Furuya S, Iwata J I and Oshiyama A 2014 Phys. Rev. B 90 155451
[46] Po H C, Zou L, Senthil T and Vishwanath A 2018 arXiv:1808.02482v2 [cond-mat.str-el]
[15] Sboychakov A O, Rakhmanov A L, Rozhkov A V and Nori F 2015 Phys. Rev. B 92 075402
[16] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
[47] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158
[48] Venderbos J W F and Fernandes R M 2018 Phys. Rev. B 98 245103
[17] Li S Y, Liu K Q, Yin L J, Wang W X, Yan W, Yang X Q, Yang J K, Liu H, Jiang H and He L 2017 Phys. Rev. B 96 155416
[18] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H and Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[49] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041
[19] Huder L, Artaud A, Quang T L, de Laissardi'ere G T, Jansen A G M, Lapertot G, Chapelier C and Renard V T 2018 Phys. Rev. Lett. 120 156405
[50] Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175
[20] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
[21] Mele E J 2011 Phys. Rev. B 84 235439
[51] Pizarro J M, Calderón M J and Bascones E 2018 arXiv:1805.07303v1 [cond-mat.str-el]
[22] Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C and He L 2015 Phys. Rev. B 92 201408(R)
[52] González J and Stauber T 2019 Phys. Rev. Lett. 122 026801
[23] Fang S and Kaxiras E 2016 Phys. Rev. B 93 235153
[53] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151
[24] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
[54] Kennes D M, Lischner J and Karrasch C 2018 Phys. Rev. B 98 241407(R)
[25] Gonzalez-Arraga L A, Lado J L, Guinea F and San-Jose P 2017 Phys. Rev. Lett. 119 107201
[55] Lin Y P and Nandkishore R M 2018 Phys. Rev. B 98 214521
[26] Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C and He L 2012 Phys. Rev. Lett. 109 126801
[56] Fidrysiak M, Zegrodnik M and Spalek J 2018 Phys. Rev. B 98 085436
[27] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
[57] Roy B and Juričić V 2019 Phys. Rev. B 99 121407(R)
[28] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[58] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101
[29] Trambly de Laissardi'ere G, Mayou D and Magaud L 2010 Nano Lett. 10 804
[59] Ray S and Das T 2019 Phys. Rev. B 99 134515
[30] Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E and Beechem T E 2012 Phys. Rev. Lett. 109 186807
[60] Tang Q K, Yang L, Wang D, Zhang F C and Wang Q H 2019 Phys. Rev. B 99 094521
[31] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D and Dean C R 2018 Nature 557 404
[61] You Y Z and Vishwanath A 2019 arXiv:1805.06867v2 [cond-mat.str-el]
[32] Kerelsky A, McGilly L, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N 2018 arXiv:1812.08776v2 [cond-mat.mes-hall]
[33] Huang T, Zhang L and Ma T 2019 Sci. Bull. 64 310
[62] Baskaran G 2018 arXiv:1804.00627v1 [cond-mat.supr-con]
[34] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001
[35] Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453
[63] Peltonen T J, Ojajärvi R and Heikkilä T T 2018 Phys. Rev. B 98 220504(R)
[36] Zhang L 2019 Sci. Bull. 64 495
[64] Irkhin V Y and Skryabin Y N 2018 JETP Lett. 107 651
[37] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001
[65] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127
[38] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103
[39] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154
[66] Zhu G Y, Xiang T and Zhang G M 2018 arXiv:1806.07535v2 [cond-mat.str-el]
[67] Wu F, MacDonald A H and Martin I 2018 Phys. Rev. Lett. 121 257001
[40] Wu X C, Pawlak K A, Jian C M and Xu C 2018 arXiv:1805.06906v1 [cond-mat.str-el]
[68] Carr S, Fang S, Jarillo-Herrero P and Kaxiras E 2018 Phys. Rev. B 98 085144
[41] Ochi M, Koshino M and Kuroki K 2018 Phys. Rev. B 98 081102(R)
[69] Guinea F and Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174
[42] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[43] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[70] Lian B, Wang Z and Bernevig B A 2019 arXiv:1807.04382v3 [cond-mat.mes-hall]
[44] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435
[45] Kang J and Vafek O 2018 Phys. Rev. X 8 031088
[71] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2018 arXiv:1807.10676v2 [cond-mat.mes-hall]
[72] Laksono E, Leaw J N, Reaves A, Singh M, Wang X, Adam S, Gu X 2018 Solid State Comm. 282 38
[46] Po H C, Zou L, Senthil T and Vishwanath A 2018 arXiv:1808.02482v2 [cond-mat.str-el]
[73] Chen L, Li H Z and Han R S 2019 J. Phys.: Condens. Matter 31 065601
[47] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158
[74] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[48] Venderbos J W F and Fernandes R M 2018 Phys. Rev. B 98 245103
[75] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F 2011 Nat. Phys. 7 119
[49] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041
[76] Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidt W, Loewenhaupt M and Steglich F 2011 Phys. Rev. Lett. 106 246401
[50] Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175
[77] Vieyra H A, Oeschler N, Seiro S, Jeevan H S, Geibel C, Parker D and Steglich F 2011 Phys. Rev. Lett. 106 207001
[78] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H and Machia K 2014 Phys. Rev. Lett. 112 067002
[51] Pizarro J M, Calderón M J and Bascones E 2018 arXiv:1805.07303v1 [cond-mat.str-el]
[79] Enayat M, Sun Z, Maldonado A, Suderow H, Seiro S, Geibel C, Wirth S, Steglich F and Wahl P 2016 Phys. Rev. B 93 045123
[52] González J and Stauber T 2019 Phys. Rev. Lett. 122 026801
[80] Li Y, Liu M, Fu Z, Chen X, Yang F and Yang Y F 2018 Phys. Rev. Lett. 120 217001
[53] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151
[81] Millis A J, Monien H and Pines D 1990 Phys. Rev. B 42 167
[54] Kennes D M, Lischner J and Karrasch C 2018 Phys. Rev. B 98 241407(R)
[82] Monthoux P, Balatsky A V and Pines D 1991 Phys. Rev. Lett. 67 3448
[55] Lin Y P and Nandkishore R M 2018 Phys. Rev. B 98 214521
[83] Monthoux P and Pines D 1992 Phys. Rev. Lett. 69 961
[56] Fidrysiak M, Zegrodnik M and Spalek J 2018 Phys. Rev. B 98 085436
[84] Millis A J 1992 Phys. Rev. B 45 13047
[57] Roy B and Juričić V 2019 Phys. Rev. B 99 121407(R)
[85] Monthoux P, Balatsky A V and Pines D 1992 Phys. Rev. B 46 14803
[58] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101
[86] Monthoux P and Pines D 1994 Phys. Rev. B 49 4261
[59] Ray S and Das T 2019 Phys. Rev. B 99 134515
[87] Monthoux P and Lonzarich G G 2002 Phys. Rev. B 66 224504
[60] Tang Q K, Yang L, Wang D, Zhang F C and Wang Q H 2019 Phys. Rev. B 99 094521
[88] Dolgov O V, Mazin I I, Parker D and Golubov A A 2009 Phys. Rev. B 79 060502(R)
[89] Yang Y F and Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178
[61] You Y Z and Vishwanath A 2019 arXiv:1805.06867v2 [cond-mat.str-el]
[90] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[91] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[62] Baskaran G 2018 arXiv:1804.00627v1 [cond-mat.supr-con]
[92] Bang Y and Stewart G R 2017 J. Phys.: Condens. Matter 29 123003
[63] Peltonen T J, Ojajärvi R and Heikkilä T T 2018 Phys. Rev. B 98 220504(R)
[64] Irkhin V Y and Skryabin Y N 2018 JETP Lett. 107 651
[93] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Tsutsumi Y, Ikeda H and Machida K Phys. Rev. B 94 054514
[65] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127
[94] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009
[95] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[66] Zhu G Y, Xiang T and Zhang G M 2018 arXiv:1806.07535v2 [cond-mat.str-el]
[96] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[67] Wu F, MacDonald A H and Martin I 2018 Phys. Rev. Lett. 121 257001
[97] Van Harlingen D J 1995 Rev. Mod. Phys. 67 515
[68] Carr S, Fang S, Jarillo-Herrero P and Kaxiras E 2018 Phys. Rev. B 98 085144
[98] Charpentier S, Galletti L, Kunakova G, Arpaia R, Song Y, Baghdadi R, Wang S M, Kalaboukhov A, Olsson E, Tafuri F, Golubev D, Linder J, Bauch T and Lombardi F 2017 Nat. Comm. 8 2019
[69] Guinea F and Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174
[99] Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D and Kapitulnik A 2015 Phys. Rev. B 91 140506(R)
[70] Lian B, Wang Z and Bernevig B A 2019 arXiv:1807.04382v3 [cond-mat.mes-hall]
[71] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2018 arXiv:1807.10676v2 [cond-mat.mes-hall]
[72] Laksono E, Leaw J N, Reaves A, Singh M, Wang X, Adam S, Gu X 2018 Solid State Comm. 282 38
[73] Chen L, Li H Z and Han R S 2019 J. Phys.: Condens. Matter 31 065601
[74] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[75] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F 2011 Nat. Phys. 7 119
[76] Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidt W, Loewenhaupt M and Steglich F 2011 Phys. Rev. Lett. 106 246401
[77] Vieyra H A, Oeschler N, Seiro S, Jeevan H S, Geibel C, Parker D and Steglich F 2011 Phys. Rev. Lett. 106 207001
[78] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H and Machia K 2014 Phys. Rev. Lett. 112 067002
[79] Enayat M, Sun Z, Maldonado A, Suderow H, Seiro S, Geibel C, Wirth S, Steglich F and Wahl P 2016 Phys. Rev. B 93 045123
[80] Li Y, Liu M, Fu Z, Chen X, Yang F and Yang Y F 2018 Phys. Rev. Lett. 120 217001
[81] Millis A J, Monien H and Pines D 1990 Phys. Rev. B 42 167
[82] Monthoux P, Balatsky A V and Pines D 1991 Phys. Rev. Lett. 67 3448
[83] Monthoux P and Pines D 1992 Phys. Rev. Lett. 69 961
[84] Millis A J 1992 Phys. Rev. B 45 13047
[85] Monthoux P, Balatsky A V and Pines D 1992 Phys. Rev. B 46 14803
[86] Monthoux P and Pines D 1994 Phys. Rev. B 49 4261
[87] Monthoux P and Lonzarich G G 2002 Phys. Rev. B 66 224504
[88] Dolgov O V, Mazin I I, Parker D and Golubov A A 2009 Phys. Rev. B 79 060502(R)
[89] Yang Y F and Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178
[90] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[91] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[92] Bang Y and Stewart G R 2017 J. Phys.: Condens. Matter 29 123003
[93] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Tsutsumi Y, Ikeda H and Machida K Phys. Rev. B 94 054514
[94] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009
[95] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[96] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[97] Van Harlingen D J 1995 Rev. Mod. Phys. 67 515
[98] Charpentier S, Galletti L, Kunakova G, Arpaia R, Song Y, Baghdadi R, Wang S M, Kalaboukhov A, Olsson E, Tafuri F, Golubev D, Linder J, Bauch T and Lombardi F 2017 Nat. Comm. 8 2019
[99] Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D and Kapitulnik A 2015 Phys. Rev. B 91 140506(R)
[1] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[2] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[3] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[4] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[5] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[6] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[7] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[8] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[9] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[10] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
[11] Superconductivity in an intermetallic oxide Hf3Pt4Ge2O
Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2021, 30(7): 077403.
[12] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[13] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[14] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[15] A short review of the recent progresses in the study of the cuprate superconductivity
Tao Li(李涛). Chin. Phys. B, 2021, 30(10): 100508.
[1] Hou Bang-Pin, Liu Jie, Hu Ping. Sum and two-atom dipole squeezing in a system of a two-mode vacuum field interacting with two coupled atoms[J]. Chin. Phys., 2002, 11(1): 30 -34 .
[2] Sun Li-Qun, Wang Jia, Hong Tao, Tian Qian. A virtual optical probe based on evanescent wave interference[J]. Chin. Phys., 2002, 11(10): 1022 -1027 .
[3] Zhang Dong-Hai. Fragmentation of 16O nuclei in nuclear emulsion[J]. Chin. Phys., 2002, 11(12): 1254 -1258 .
[4] Fang Jian-Hui, Zhao Song-Qing. Noether's theorem of a rotational relativistic variable mass system[J]. Chin. Phys., 2002, 11(5): 445 -449 .
[5] Chen Chao, Wang Zhi-Wen. Inequalities of the electron density at the nucleus and radial expectation values of the ground state for the lithium isoelectronic sequence[J]. Chin. Phys. B, 2003, 12(6): 604 -609 .
[6] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Zhang Hao, Wang Peng, Xu De-Gang, Yu Guo-Jun, Zhang Fan. Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3[J]. Chin. Phys. B, 2004, 13(3): 364 -368 .
[7] Yang Lei, Wu Jian-Sheng, Zhang Lan-Ting. Effect of phonon scattering mechanisms on the lattice thermal conductivity of skutterudite-related compound[J]. Chin. Phys. B, 2004, 13(4): 516 -521 .
[8] Luo Shao-Kai, Cai Jian-Le, Jia Li-Qun. A new non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations[J]. Chin. Phys. B, 2005, 14(4): 656 -659 .
[9] Cheng Qing-Hua, Cao Li, Xu Da-Hai, Wu Da-Jin. Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts[J]. Chin. Phys. B, 2005, 14(6): 1159 -1167 .
[10] Zhao Song-Qing, Zhou Yue-Liang, Zhao Kun, Wang Shu-Fang, Chen Zheng-Hao, Lü Hui-Bin, Jin Kui-Juan, Cheng Bo-Lin, Yang Guo-Zhen. Ultraviolet photovoltaic characteristic of MgB2 thin film[J]. Chin. Phys., 2006, 15(4): 839 -841 .