Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074205    DOI: 10.1088/1674-1056/28/7/074205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flexible broadband polarization converter based on metasurface at microwave band

Qi Wang(王奇)1, Xiangkun Kong(孔祥鲲)1, Xiangxi Yan(严祥熙)1, Yan Xu(徐岩)1, Shaobin Liu(刘少斌)1, Jinjun Mo(莫锦军)2, Xiaochun Liu(刘晓春)3
1 Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
3 Research Institute for Special Structures of Aeronautical Composite Aviation Industry Corporation of China, Aeronautical Science Key Laboratory for High Performance Electromagnetic Windows, Jinan 250000, China
Abstract  

A flexible broadband linear polarization converter is proposed based on the metasurface operating at microwave band. To achieve bandwidth extension property, long and short metallic arc wires, as well as the metallic disks placed over a ground plane, are combined into the polarizer, which can generate three neighboring resonances. Due to the combination of the first two resonances and the optimized size and thickness of the unit cell, the polarization converter can have a weak incident angle dependence. Both simulated and measured results confirm that the average polarization conversion ratio is over 85% from 11.3 GHz to 20.2 GHz within a broad range of incident angle from 0° to 45°. Moreover, the proposed polarization converter based on flexible substrates can be applied for conformal design. The simulation and experiment results demonstrate that our designed polarizer still keeps high polarization conversion efficiency, even when it adheres to convex cylindrical surfaces. The periodic metallic structure of the designed polarizer has great potential application values in the microwave, terahertz, and optic regimes.

Keywords:  polarization converter      flexible metasurface      wide-angle      broadband  
Received:  04 March 2019      Revised:  06 April 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. kfjj20180401), the National Natural Science Foundation of China (Grant No. 61471368), the Aeronautical Science Foundation of China (Grant No. 20161852016), the China Postdoctoral Science Foundation (Grant No. 2016M601802), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1601009B).

Corresponding Authors:  Xiangkun Kong     E-mail:  xkkong@nuaa.edu.cn

Cite this article: 

Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春) Flexible broadband polarization converter based on metasurface at microwave band 2019 Chin. Phys. B 28 074205

[1] Dietlein C, Luukanen A, Popović Z and Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804
[34] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[2] Chattopadhyay T, Bhowmik P and Roy J N 2012 J. Opt. Soc. Am. B 29 2852
[35] Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z and Wei X Y 2016 Chin. Phys. B 25 084202
[3] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[36] Kim H K, Ling K Y, Kim K and Lim S 2015 Opt. Express 23 5898
[4] Shelby R A, Smith D R, Nemat-Nasser S C and Schultz S 2001 Appl. Phys. Lett. 78 489
[37] Wang L L, Liu S B, Zhang H F, Kong X K and Liu L L 2017 J. Electromagn. Waves Appl. 31 1216
[5] Huang X J, Yang D and Yang H L 2014 J. Appl. Phys. 115 103505
[38] Sharma S K, Ghosh S, Srivastava K V and Shukla A 2017 Microwave Opt. Technol. Lett. 59 348
[6] Ma H F, Wang G Z, Kong G S and Cui T J 2014 Opt. Mater. Express 4 1717
[39] Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
[7] Cheng Y Z, Nie Y, Cheng Z Z, Wu L, Wang X and Gong R Z 2013 J. Electromagn. Waves Appl. 27 1850
[40] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
[8] Kundtz N and Smith D R 2010 Nat. Mater. 9 129
[41] Jang Y, Yoo M and Lim S 2013 Opt. Express 21 24163
[9] Yu N F and Capasso F 2014 Nat. Mater. 13 139
[42] Xu H X, Tang S W, Sun C, Li L L, Liu H W, Yang X M, Yuan F and Sun Y M 2018 Photon. Res. 6 782
[10] Liu K, Liu Y, Jia Y T and Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288
[43] Wu K D, Coquet P, Wang Q J and Genevet P 2018 Nat. Commun. 9 3494
[11] Jia Y T, Liu Y, Gong S X, Zhang W B and Liao G S 2017 IEEE Antennas Wireless Propag. Lett. 16 2477
[44] Zhu H, Liang X L, Ye S, Jin R H and Geng J P 2016 IEEE Antennas Wireless Propag. Lett. 15 1653
[12] Ni X J, Wong Z J, Mrejen M, Wang Y and Zhang X 2015 Science 349 1310
[45] Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Photon. 1 279
[13] Bückmann T, Thiel M, Kadic M, Schittny R and Wegener M 2014 Nat. Commun. 5 4130
[46] Diem M, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 033101
[14] Meissner T and Wentz F J 2006 IEEE Trans. Geosci. Remote Sens. 44 506
[15] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[16] Ma X L, Huang C, Pu M B, Hu C G, Feng Q and Luo X G 2012 Opt. Express 20 16050
[17] Winkler S A, Hong W, Bozzi M and Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
[18] Cheng Y Z, Nie Y, Cheng Z Z and Gong R Z 2014 Prog. Electromagn. Res. 145 263
[19] Song K, Liu Y H, Luo C R and Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104
[20] Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A and Yuan X H 2014 Appl. Phys. A 116 643
[21] Wei Z Y, Cao Y, Fan Y C, Yu X and Li H Q 2011 Appl. Phys. Lett. 99 221907
[22] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z and Zhang A X 2015 J. Appl. Phys. 117 044501
[23] Jia Y T, Liu Y, Zhang W B and Gong S X 2016 Appl. Phys. Lett. 109 051901
[24] Yogesh N, Fu T, Lan F and Ouyang Z B 2015 IEEE Photon. J. 7 1
[25] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
[26] Feng M D, Wang J F, Ma H, Mo W D, Ye H J and Qu S B 2013 J. Appl. Phys. 114 074508
[27] Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B and Li Y F 2014 J. Appl. Phys. 115 154504
[28] Wu J L, Lin B Q and Da X Y 2016 Chin. Phys. B 25 088101
[29] Dong G X, Shi H Y, Xia S, Zhang A X, Xu Z and Wei X Y 2016 Opt. Commun. 365 108
[30] Jiang Y N, Wang L, Wang J, Akwuruoha C N and Cao W P 2017 Opt. Express 25 27616
[31] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[32] Mei Z L, Ma X M, Lu C and Zhao Y D 2017 AIP Adv. 7 125323
[33] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
[34] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[35] Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z and Wei X Y 2016 Chin. Phys. B 25 084202
[36] Kim H K, Ling K Y, Kim K and Lim S 2015 Opt. Express 23 5898
[37] Wang L L, Liu S B, Zhang H F, Kong X K and Liu L L 2017 J. Electromagn. Waves Appl. 31 1216
[38] Sharma S K, Ghosh S, Srivastava K V and Shukla A 2017 Microwave Opt. Technol. Lett. 59 348
[39] Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
[40] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
[41] Jang Y, Yoo M and Lim S 2013 Opt. Express 21 24163
[42] Xu H X, Tang S W, Sun C, Li L L, Liu H W, Yang X M, Yuan F and Sun Y M 2018 Photon. Res. 6 782
[43] Wu K D, Coquet P, Wang Q J and Genevet P 2018 Nat. Commun. 9 3494
[44] Zhu H, Liang X L, Ye S, Jin R H and Geng J P 2016 IEEE Antennas Wireless Propag. Lett. 15 1653
[45] Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Photon. 1 279
[46] Diem M, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 033101
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[6] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[7] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[8] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[9] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[10] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[11] Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface
Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇). Chin. Phys. B, 2021, 30(12): 127803.
[12] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[13] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[14] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[15] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
No Suggested Reading articles found!