Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074205    DOI: 10.1088/1674-1056/28/7/074205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flexible broadband polarization converter based on metasurface at microwave band

Qi Wang(王奇)1, Xiangkun Kong(孔祥鲲)1, Xiangxi Yan(严祥熙)1, Yan Xu(徐岩)1, Shaobin Liu(刘少斌)1, Jinjun Mo(莫锦军)2, Xiaochun Liu(刘晓春)3
1 Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
3 Research Institute for Special Structures of Aeronautical Composite Aviation Industry Corporation of China, Aeronautical Science Key Laboratory for High Performance Electromagnetic Windows, Jinan 250000, China
Abstract  

A flexible broadband linear polarization converter is proposed based on the metasurface operating at microwave band. To achieve bandwidth extension property, long and short metallic arc wires, as well as the metallic disks placed over a ground plane, are combined into the polarizer, which can generate three neighboring resonances. Due to the combination of the first two resonances and the optimized size and thickness of the unit cell, the polarization converter can have a weak incident angle dependence. Both simulated and measured results confirm that the average polarization conversion ratio is over 85% from 11.3 GHz to 20.2 GHz within a broad range of incident angle from 0° to 45°. Moreover, the proposed polarization converter based on flexible substrates can be applied for conformal design. The simulation and experiment results demonstrate that our designed polarizer still keeps high polarization conversion efficiency, even when it adheres to convex cylindrical surfaces. The periodic metallic structure of the designed polarizer has great potential application values in the microwave, terahertz, and optic regimes.

Keywords:  polarization converter      flexible metasurface      wide-angle      broadband  
Received:  04 March 2019      Revised:  06 April 2019      Published:  05 July 2019
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. kfjj20180401), the National Natural Science Foundation of China (Grant No. 61471368), the Aeronautical Science Foundation of China (Grant No. 20161852016), the China Postdoctoral Science Foundation (Grant No. 2016M601802), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1601009B).

Corresponding Authors:  Xiangkun Kong     E-mail:  xkkong@nuaa.edu.cn

Cite this article: 

Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春) Flexible broadband polarization converter based on metasurface at microwave band 2019 Chin. Phys. B 28 074205

[1] Dietlein C, Luukanen A, Popović Z and Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804
[34] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[2] Chattopadhyay T, Bhowmik P and Roy J N 2012 J. Opt. Soc. Am. B 29 2852
[35] Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z and Wei X Y 2016 Chin. Phys. B 25 084202
[3] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[36] Kim H K, Ling K Y, Kim K and Lim S 2015 Opt. Express 23 5898
[4] Shelby R A, Smith D R, Nemat-Nasser S C and Schultz S 2001 Appl. Phys. Lett. 78 489
[37] Wang L L, Liu S B, Zhang H F, Kong X K and Liu L L 2017 J. Electromagn. Waves Appl. 31 1216
[5] Huang X J, Yang D and Yang H L 2014 J. Appl. Phys. 115 103505
[38] Sharma S K, Ghosh S, Srivastava K V and Shukla A 2017 Microwave Opt. Technol. Lett. 59 348
[6] Ma H F, Wang G Z, Kong G S and Cui T J 2014 Opt. Mater. Express 4 1717
[39] Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
[7] Cheng Y Z, Nie Y, Cheng Z Z, Wu L, Wang X and Gong R Z 2013 J. Electromagn. Waves Appl. 27 1850
[40] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
[8] Kundtz N and Smith D R 2010 Nat. Mater. 9 129
[41] Jang Y, Yoo M and Lim S 2013 Opt. Express 21 24163
[9] Yu N F and Capasso F 2014 Nat. Mater. 13 139
[42] Xu H X, Tang S W, Sun C, Li L L, Liu H W, Yang X M, Yuan F and Sun Y M 2018 Photon. Res. 6 782
[10] Liu K, Liu Y, Jia Y T and Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288
[43] Wu K D, Coquet P, Wang Q J and Genevet P 2018 Nat. Commun. 9 3494
[11] Jia Y T, Liu Y, Gong S X, Zhang W B and Liao G S 2017 IEEE Antennas Wireless Propag. Lett. 16 2477
[44] Zhu H, Liang X L, Ye S, Jin R H and Geng J P 2016 IEEE Antennas Wireless Propag. Lett. 15 1653
[12] Ni X J, Wong Z J, Mrejen M, Wang Y and Zhang X 2015 Science 349 1310
[45] Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Photon. 1 279
[13] Bückmann T, Thiel M, Kadic M, Schittny R and Wegener M 2014 Nat. Commun. 5 4130
[46] Diem M, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 033101
[14] Meissner T and Wentz F J 2006 IEEE Trans. Geosci. Remote Sens. 44 506
[15] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[16] Ma X L, Huang C, Pu M B, Hu C G, Feng Q and Luo X G 2012 Opt. Express 20 16050
[17] Winkler S A, Hong W, Bozzi M and Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
[18] Cheng Y Z, Nie Y, Cheng Z Z and Gong R Z 2014 Prog. Electromagn. Res. 145 263
[19] Song K, Liu Y H, Luo C R and Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104
[20] Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A and Yuan X H 2014 Appl. Phys. A 116 643
[21] Wei Z Y, Cao Y, Fan Y C, Yu X and Li H Q 2011 Appl. Phys. Lett. 99 221907
[22] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z and Zhang A X 2015 J. Appl. Phys. 117 044501
[23] Jia Y T, Liu Y, Zhang W B and Gong S X 2016 Appl. Phys. Lett. 109 051901
[24] Yogesh N, Fu T, Lan F and Ouyang Z B 2015 IEEE Photon. J. 7 1
[25] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
[26] Feng M D, Wang J F, Ma H, Mo W D, Ye H J and Qu S B 2013 J. Appl. Phys. 114 074508
[27] Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B and Li Y F 2014 J. Appl. Phys. 115 154504
[28] Wu J L, Lin B Q and Da X Y 2016 Chin. Phys. B 25 088101
[29] Dong G X, Shi H Y, Xia S, Zhang A X, Xu Z and Wei X Y 2016 Opt. Commun. 365 108
[30] Jiang Y N, Wang L, Wang J, Akwuruoha C N and Cao W P 2017 Opt. Express 25 27616
[31] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[32] Mei Z L, Ma X M, Lu C and Zhao Y D 2017 AIP Adv. 7 125323
[33] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
[34] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[35] Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z and Wei X Y 2016 Chin. Phys. B 25 084202
[36] Kim H K, Ling K Y, Kim K and Lim S 2015 Opt. Express 23 5898
[37] Wang L L, Liu S B, Zhang H F, Kong X K and Liu L L 2017 J. Electromagn. Waves Appl. 31 1216
[38] Sharma S K, Ghosh S, Srivastava K V and Shukla A 2017 Microwave Opt. Technol. Lett. 59 348
[39] Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
[40] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
[41] Jang Y, Yoo M and Lim S 2013 Opt. Express 21 24163
[42] Xu H X, Tang S W, Sun C, Li L L, Liu H W, Yang X M, Yuan F and Sun Y M 2018 Photon. Res. 6 782
[43] Wu K D, Coquet P, Wang Q J and Genevet P 2018 Nat. Commun. 9 3494
[44] Zhu H, Liang X L, Ye S, Jin R H and Geng J P 2016 IEEE Antennas Wireless Propag. Lett. 15 1653
[45] Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Photon. 1 279
[46] Diem M, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 033101
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[3] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[4] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[5] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
[6] Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface
Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯). Chin. Phys. B, 2018, 27(5): 054204.
[7] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[8] Multiple broadband magnetoelectric response in Terfenol-D/PZT structure
Jian-Biao Wen(文建彪), Juan-Juan Zhang(张娟娟), Yuan-Wen Gao(高原文). Chin. Phys. B, 2018, 27(2): 027702.
[9] Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial
Long-Hui He(贺龙辉), Lian-Wen Deng(邓联文), Heng Luo(罗衡), Jun He(贺君), Yu-Han Li(李宇涵), Yun-Chao Xu(徐运超), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2018, 27(12): 127801.
[10] A linear-to-circular polarization converter based on I-shapedcircular frequency selective surfaces
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇), Kai Wu(吴凯). Chin. Phys. B, 2017, 26(9): 094201.
[11] The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology
Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(8): 088401.
[12] Fabrication of broadband antireflection coatings using broadband optical monitoring mixed with time monitoring
Qi-Peng Lv(吕起鹏), Song-Wen Deng(邓淞文), Shao-Qian Zhang(张绍骞), Fa-Quan Gong(公发全), Gang Li(李刚). Chin. Phys. B, 2017, 26(5): 057801.
[13] Single-layer broadband planar antenna using ultrathin high-efficiency focusing metasurfaces
Hai-Sheng Hou(侯海生), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Wen-Long Guo(郭文龙), Tang-jing Li(李唐景), Tong Cai(蔡通). Chin. Phys. B, 2017, 26(5): 057701.
[14] Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate
Kai-Lun Zhang(张凯伦), Zhi-Ling Hou(侯志灵), Song Bi(毕松), Hui-Min Fang(房惠敏). Chin. Phys. B, 2017, 26(12): 127802.
[15] Ultra-broadband and polarization-independent planar absorber based on multilayered graphene
Jiao Wang(王娇), Chao-Ning Gao(高超宁), Yan-Nan Jiang(姜彦南), Charles Nwakanma Akwuruoha. Chin. Phys. B, 2017, 26(11): 114102.
No Suggested Reading articles found!