Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 073701    DOI: 10.1088/1674-1056/28/7/073701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optimization of a magneto-optic trap using nanofibers

Xin Wang(王鑫)1, Li-Jun Song(宋丽军)1, Chen-Xi Wang(王晨曦)1, Peng-Fei Zhang(张鹏飞)1,2, Gang Li(李刚)1,2, Tian-Cai Zhang(张天才)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

We experimentally demonstrate a reliable method based on a nanofiber to optimize the number of cold atoms in a magneto-optical trap (MOT) and to monitor the MOT in real time. The atomic fluorescence is collected by a nanofiber with subwavelength diameter of about 400 nm. The MOT parameters are experimentally adjusted in order to match the maximum number of cold atoms provided by the fluorescence collected by the nanofiber. The maximum number of cold atoms is obtained when the intensities of the cooling and re-pumping beams are about 23.5 mW/cm2 and 7.1 mW/cm2, respectively; the detuning of the cooling beam is -13.0 MHz, and the axial magnetic gradient is about 9.7 Gauss/cm. We observe a maximum photon counting rate of nearly (4.5±0.1)×105 counts/s. The nanofiber-atom system can provide a powerful and flexible tool for sensitive atom detection and for monitoring atom-matter coupling. It can be widely used from quantum optics to quantum precision measurement.

Keywords:  nanofiber      magneto-optic trap      optimization      fluorescence      efficient coupling  
Received:  28 February 2019      Revised:  07 May 2019      Accepted manuscript online: 
PACS:  37.10.-x (Atom, molecule, and ion cooling methods)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11574187, 11634008, 11674203, and 61227902), and the Fund for Shanxi “1331 Project”, China.

Corresponding Authors:  Peng-Fei Zhang, Tian-Cai Zhang     E-mail:  cqedpfzhang@163.com;tczhang@sxu.edu.cn

Cite this article: 

Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才) Optimization of a magneto-optic trap using nanofibers 2019 Chin. Phys. B 28 073701

[33] Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
[1] Kien F L, Liang J Q, Hakuta K and Balykin V I 2004 Opt. Commun. 242 445
[34] Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A and Volz J 2017 Opt. Lett. 42 85
[2] Nayak K P, Sadgrove M, Yalla R, Kien F L and Hakuta K 2018 J. Opt. 20 073001
[35] Cheng F, Zhang P F, Wang X and Zhang T C 2017 J. Quantum Opt. 23 74 (in Chinese)
[3] Tong L, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641
[36] Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500
[4] Wu X and Tong L 2013 Nanophotonics 2 407
[37] Abraham E R I and Cornell E A 1998 Appl. Opt. 37 1762
[5] Solano P, Grover J A, Hoffman J E, Ravets S and Fatemi F K 2017 Adv. At. Mol. Opt. Phys. 66 439
[38] Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M and Zhang T C 2009 Phys. Rev. A 80 053420
[6] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
[39] Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
[7] Kien F L, Dutta Gupta S, Balykin V I and Hakuta K 2005 Phys. Rev. A 72 032509
[40] Hoth G W, Donley E A and Kitching J 2013 Opt. Lett. 38 661
[8] Phillips W D and Metcalf H 1982 Phys. Rev. Lett. 48 596
[41] Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
[9] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
[42] Grego S, Colla M, Fioretti A, Müller J, Verkerk P and Arimondo E 1996 Opt. Commun. 132 519
[10] Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[43] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[11] Saffman M, Walker T and Molmer K 2010 Rev. Mod. Phys. 82 2313
[44] Haw M, Evetts N, Gunton W, Dongen J V, Booth J L and Madison K W 2012 J. Opt. Soc. Am. B 29 475
[12] Wang L, Zhang H and Zhang L J 2018 J. Quantum Opt. 24 178 (in Chinese)
[45] Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[13] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[46] Goban A, Choi K S, Alton D J, Ding D, Lacroute C, Pototschnig M, Thiele T, Stern N P and Kimble H J 2012 Phys. Rev. Lett. 109 033603
[14] Yang G Y, Chen L C, Mi C D, Wang P J and Zhang J 2018 J. Quantum Opt. 24 156 (in Chinese)
[47] Kato S and Aoki T 2015 Phys. Rev. Lett. 115 093603
[15] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[48] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
[16] Wang Y, Zheng R F, Zhang H and Zhou L 2018 J. Quantum Opt. 24 436 (in Chinese)
[49] Kimble H J 2008 Nature 453 1023
[17] Monroe C and Lukin M 2008 Phys. World 21 32
[18] Wang Y H, Yang H J, Zhang T C and Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese)
[19] Gibble K E, Kasapi S and Chu S 1992 Opt. Lett. 17 526
[20] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[21] Vengalattore M, Conroy R S and Prentiss M G 2004 Phys. Rev. Lett. 92 183001
[22] Stites R, McClimans M and Bali S 2005 Opt. Commun. 248 173
[23] Lin Y W, Chou H C, Dwivedi P P, Chen Y C and Yu I A 2008 Opt. Express 16 3753
[24] Kien F L, Balykin V I and Hakuta K 2006 Phys. Rev. A 73 013819
[25] Kien F L, Balykin V I and Hakuta K 2006 Phys. Rev. A 74 033412
[26] Nayak K P, Melentiev P N, Morinaga M, Kien F L, Balykin V I and Hakuta K 2007 Opt. Express 15 5431
[27] Nayak K P and Hakuta K 2008 New J. Phys. 10 053003
[28] Sague G, Vetsch E, Alt W, Meschede D and Rauschenbeutel A 2007 Phys. Rev. Lett. 99 163602
[29] Kien F L and Hakuta K 2009 Phys. Rev. A 80 053826
[30] Nayak K P, Kien F L, Kawai Y, Hakuta K, Nakajima K, Miyazaki H and Sugimoto Y 2011 Opt. Express 19 14040
[31] Wuttke C, Becker M, Bruckner S, Rothhardt M and Rauschenbeutel A 2012 Opt. Lett. 37 1949
[32] Nayak K P and Hakuta K 2013 Opt. Express 21 2480
[33] Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
[34] Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A and Volz J 2017 Opt. Lett. 42 85
[35] Cheng F, Zhang P F, Wang X and Zhang T C 2017 J. Quantum Opt. 23 74 (in Chinese)
[36] Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500
[37] Abraham E R I and Cornell E A 1998 Appl. Opt. 37 1762
[38] Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M and Zhang T C 2009 Phys. Rev. A 80 053420
[39] Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
[40] Hoth G W, Donley E A and Kitching J 2013 Opt. Lett. 38 661
[41] Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
[42] Grego S, Colla M, Fioretti A, Müller J, Verkerk P and Arimondo E 1996 Opt. Commun. 132 519
[43] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[44] Haw M, Evetts N, Gunton W, Dongen J V, Booth J L and Madison K W 2012 J. Opt. Soc. Am. B 29 475
[45] Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[46] Goban A, Choi K S, Alton D J, Ding D, Lacroute C, Pototschnig M, Thiele T, Stern N P and Kimble H J 2012 Phys. Rev. Lett. 109 033603
[47] Kato S and Aoki T 2015 Phys. Rev. Lett. 115 093603
[48] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
[49] Kimble H J 2008 Nature 453 1023
[1] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[2] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[3] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[4] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[5] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[6] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[7] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[8] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[9] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[10] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[11] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[12] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[13] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[14] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
[15] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
No Suggested Reading articles found!